REFERENCES
1. Zhao, Y.; Guo, X.; Hong, W.; et al. Biologically imitated capacitive flexible sensor with ultrahigh sensitivity and ultralow detection limit based on frog leg structure composites via 3D printing. Compos. Sci. Technol. 2023, 231, 109837.
2. Hong, Q.; Liu, T.; Guo, X.; et al. 3D dual-mode tactile sensor with decoupled temperature and pressure sensing: toward biological skins for wearable devices and smart robotics. Sens. Actuators. B. Chem. 2024, 404, 135255.
3. Zhu, P.; Wang, Y.; Wang, Y.; Mao, H.; Zhang, Q.; Deng, Y. Flexible 3D architectured piezo/thermoelectric bimodal tactile sensor array for E-skin application. Adv. Energy. Mater. 2020, 10, 2001945.
4. Li, W. D.; Ke, K.; Jia, J.; et al. Recent advances in multiresponsive flexible sensors towards E-skin: a delicate design for versatile sensing. Small 2022, 18, e2103734.
5. Haque, R. I.; Chandran, O.; Lani, S.; Briand, D. Self-powered triboelectric touch sensor made of 3D printed materials. Nano. Energy. 2018, 52, 54-62.
6. Wei, X.; Liang, X.; Meng, C.; Cao, S.; Shi, Q.; Wu, J. Multimodal electronic textiles for intelligent human-machine interfaces. Soft. Sci. 2023, 3, 17.
7. Zhang, X.; Tang, S.; Ma, R.; et al. High-performance multimodal smart textile for artificial sensation and health monitoring. Nano. Energy. 2022, 103, 107778.
8. Chen, H.; Guo, S.; Zhang, S.; et al. Improved flexible triboelectric nanogenerator based on tile-nanostructure for wireless human health monitor. Energy. Environ. Mater. 2024, 7, e12654.
9. Yang, C.; Zhang, D.; Wang, D.; Luan, H.; Chen, X.; Yan, W. In situ polymerized MXene/polypyrrole/hydroxyethyl cellulose-based flexible strain sensor enabled by machine learning for handwriting recognition. ACS. Appl. Mater. Interfaces. 2023, 15, 5811-21.
10. Wang, Z.; Xu, Z.; Li, N.; Yao, T.; Ge, M. Flexible pressure sensors based on MXene/PDMS porous films. Adv. Mater. Technol. 2023, 8, 2200826.
11. Liu, Z.; Tian, B.; Jiang, Z.; et al. Flexible temperature sensor with high sensitivity ranging from liquid nitrogen temperature to 1200 °C. Int. J. Extrem. Manuf. 2023, 5, 015601.
12. Janica, I.; Montes-García, V.; Urban, F.; et al. Covalently functionalized MXenes for highly sensitive humidity sensors. Small. Methods. 2023, 7, e2201651.
13. Lawaniya, S. D.; Kumar, S.; Yu, Y.; Rubahn, H.; Mishra, Y. K.; Awasthi, K. Functional nanomaterials in flexible gas sensors: recent progress and future prospects. Mater. Today. Chem. 2023, 29, 101428.
14. Xu, T.; Song, Q.; Liu, K.; et al. Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nanomicro. Lett. 2023, 15, 98.
15. Yang, C.; Wang, H.; Yang, J.; et al. A machine-learning-enhanced simultaneous and multimodal sensor based on moist-electric powered graphene oxide. Adv. Mater. 2022, 34, e2205249.
16. Gu, J.; Huang, J.; Chen, G.; et al. Multifunctional poly(vinyl alcohol) nanocomposite organohydrogel for flexible strain and temperature sensor. ACS. Appl. Mater. Interfaces. 2020, 12, 40815-27.
17. Qu, M.; Nilsson, F.; Qin, Y.; et al. Electrical conductivity and mechanical properties of melt-spun ternary composites comprising PMMA, carbon fibers and carbon black. Compos. Sci. Technol. 2017, 150, 24-31.
18. Chang, K.; Li, L.; Zhang, C.; et al. Compressible and robust PANI sponge anchored with erected MXene flakes for human motion detection. Compos. Part. A. Appl. Sci. Manuf. 2021, 151, 106671.
19. Wang, P.; Yu, W.; Li, G.; Meng, C.; Guo, S. Printable, flexible, breathable and sweatproof bifunctional sensors based on an all-nanofiber platform for fully decoupled pressure-temperature sensing application. Chem. Eng. J. 2023, 452, 139174.
20. Han, M.; Shen, W.; Tong, X.; Corriou, J. Cellulose nanofiber/MXene/AgNWs composite nanopaper with mechanical robustness for high-performance humidity sensor and smart actuator. Sens. Actuators. B. Chem. 2024, 406, 135375.
21. Lee, J.; Shin, S.; Lee, S.; et al. Highly sensitive multifilament fiber strain sensors with ultrabroad sensing range for textile electronics. ACS. Nano. 2018, 12, 4259-68.
22. Hasan, M. M.; Hossain, M. M.; Chowdhury, H. K. Two-dimensional MXene-based flexible nanostructures for functional nanodevices: a review. J. Mater. Chem. A. 2021, 9, 3231-69.
23. Peng, S.; Jin, Z.; Yao, Y.; et al. Metal-contact-induced transition of electrical transport in monolayer MoS2: from thermally activated to variable-range hopping. Adv. Elect. Materials. 2019, 5, 1900042.
24. Peng, S.; Zhang, J.; Jin, Z.; Zhang, D.; Shi, J.; Wei, S. Electric-field induced doping polarity conversion in top-gated transistor based on chemical vapor deposition of graphene. Crystals 2022, 12, 184.
25. Zhang, L.; Zhang, S.; Wang, C.; Zhou, Q.; Zhang, H.; Pan, G. B. Highly sensitive capacitive flexible pressure sensor based on a high-permittivity MXene nanocomposite and 3D network electrode for wearable electronics. ACS. Sens. 2021, 6, 2630-41.
26. Wang, T.; Qiu, Z.; Li, H.; et al. High sensitivity, wide linear-range strain sensor based on MXene/AgNW composite film with hierarchical microcrack. Small 2023, 19, e2304033.
28. Du, T.; Han, X.; Yan, X.; et al. MXene-based flexible sensors: materials, preparation, and applications. Adv. Mater. Technol. 2023, 8, 2202029.
29. Qiao, H.; Qin, W.; Chen, J.; et al. AuCu decorated MXene/RGO aerogels towards wearable thermal management and pressure sensing applications. Mater. Des. 2023, 228, 111814.
30. Cao, W.; Ouyang, H.; Xin, W.; et al. A stretchable highoutput triboelectric nanogenerator improved by MXene liquid electrode with high electronegativity. Adv. Funct. Mater. 2020, 30, 2004181.
31. Xing, H.; Li, X.; Lu, Y.; et al. MXene/MWCNT electronic fabric with enhanced mechanical robustness on humidity sensing for real-time respiration monitoring. Sens. Actuators. B. Chem. 2022, 361, 131704.
32. Zhu, M.; Yue, Y.; Cheng, Y.; et al. Hollow MXene sphere/reduced graphene aerogel composites for piezoresistive sensor with ultra‐high sensitivity. Adv. Elect. Materials. 2020, 6, 1901064.
33. Zhang, Z.; Weng, L.; Guo, K.; Guan, L.; Wang, X.; Wu, Z. Durable and highly sensitive flexible sensors for wearable electronic devices with PDMS-MXene/TPU composite films. Ceram. Int. 2022, 48, 4977-85.
34. Ma, C.; Cao, W.; Zhang, W.; et al. Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding. Chem. Eng. J. 2021, 403, 126438.
35. Ma, C.; Ma, M.; Si, C.; Ji, X.; Wan, P. Flexible MXene-based composites for wearable devices. Adv. Funct. Materials. 2021, 31, 2009524.
36. Tang, X.; Zhou, D.; Li, P.; et al. MXene-based dendrite-free potassium metal batteries. Adv. Mater. 2020, 32, e1906739.
37. Abdolhosseinzadeh, S.; Schneider, R.; Verma, A.; Heier, J.; Nüesch, F.; Zhang, C. J. Turning Trash into treasure: additive free MXene sediment inks for screen-printed micro-supercapacitors. Adv. Mater. 2020, 32, e2000716.
38. Xu, Z.; Zhang, D.; Li, Z.; et al. Waterproof flexible pressure sensors based on electrostatic self-assembled MXene/NH2-CNTs for motion monitoring and electronic skin. ACS. Appl. Mater. Interfaces. 2023, 15, 32569-79.
39. Ma, Y.; Yue, Y.; Zhang, H.; et al. 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS. Nano. 2018, 12, 3209-16.
40. Yin, T.; Cheng, Y.; Hou, Y.; et al. 3D porous structure in MXene/PANI foam for a high-performance flexible pressure sensor. Small 2022, 18, e2204806.
41. Cheng, Y.; Xie, Y.; Liu, Z.; et al. Maximizing electron channels enabled by MXene aerogel for high-performance self-healable flexible electronic skin. ACS. Nano. 2023, 1393-402.
42. Pu, J.; Zhao, X.; Zha, X.; et al. A strain localization directed crack control strategy for designing MXene-based customizable sensitivity and sensing range strain sensors for full-range human motion monitoring. Nano. Energy. 2020, 74, 104814.
43. Taromsari S, Shi HH, Saadatnia Z, Park CB, Naguib HE. Design and development of ultra-sensitive, dynamically stable, multi-modal GnP@MXene nanohybrid electrospun strain sensors. Chem. Eng. J. 2022, 442, 136138.
44. Chao, M.; Wang, Y.; Ma, D.; et al. Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing. Nano. Energy. 2020, 78, 105187.
45. Cai, Y.; Shen, J.; Ge, G.; et al. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS. Nano. 2018, 12, 56-62.
46. Jeong, J.; Seok, H.; Shin, H.; Bin, Choi. S.; Kim, J.; Kim, H. Highly durable and conductive Korea traditional paper (Hanji) embedded with Ti3C2Tx MXene for Hanji-based paper electronics. Nano. Energy. 2024, 131, 110325.
47. Wu, J.; Fan, X.; Liu, X.; et al. Highly sensitive temperature-pressure bimodal aerogel with stimulus discriminability for human physiological monitoring. Nano. Lett. 2022, 22, 4459-67.
48. Peng, J.; Ge, F.; Han, W.; et al. MXene-based thermoelectric fabric integrated with temperature and strain sensing for health monitoring. J. Mater. Sci. Technol. 2025, 212, 272-80.
49. Liu, L.; Yang, J.; Zhang, H.; Ma, J.; Zheng, J.; Wang, C. Recent advances of flexible MXene physical sensor to wearable electronics. Mater. Today. Commun. 2023, 35, 106014.
50. Cao, Z.; Yang, Y.; Zheng, Y.; et al. Highly flexible and sensitive temperature sensors based on Ti3C2Tx (MXene) for electronic skin. J. Mater. Chem. A. 2019, 7, 25314-23.
51. Zhao, L.; Fu, X.; Xu, H.; Zheng, Y.; Han, W.; Wang, L. Tissue-like sodium alginate-coated 2D MXene-based flexible temperature sensors for full-range temperature monitoring. Adv. Mater. Technol. 2022, 7, 2101740.
52. Sun, B.; Xu, G.; Ji, X.; et al. A strain-resistant flexible thermistor sensor array based on CNT/MXene hybrid materials for lithium-ion battery and human temperature monitoring. Sens. Actuators. A. Phys. 2024, 368, 115059.
53. Yang, M.; Huang, M.; Li, Y.; et al. Printing assembly of flexible devices with oxidation stable MXene for high performance humidity sensing applications. Sens. Actuators. B. Chem. 2022, 364, 131867.
54. Li, Y.; Huang, X.; Chen, Q.; Yao, Y.; Pan, W. Nanochitin/MXene composite coated on quartz crystal microbalance for humidity sensing. Nanomaterials 2023, 13, 3135.
55. Gong, G.; Lin, C.; Chen, W.; et al. Flexible cellulose nanofibers/MXene bilayer membrane humidity sensor with a synergistic effect of force and hygroscopic expansion. Ceram. Int. 2024, 50, 24670-8.
56. Han, M.; Shen, W. Nacre-inspired cellulose nanofiber/MXene flexible composite film with mechanical robustness for humidity sensing. Carbohydr. Polym. 2022, 298, 120109.
57. Huang, M.; Lu, J.; Ji, J.; et al. Non-contact humidity monitoring: boosting the performance of all-printed humidity sensor using PDDA-modified Ti3C2Tx nanoribbons. Chem. Eng. J. 2024, 485, 149633.
58. Zhang, H.; Xu, X.; Huang, M.; et al. Interlayer cross-linked MXene enables ultra-stable printed paper-based flexible sensor for real-time humidity monitoring. Chem. Eng. J. 2024, 495, 153343.
59. Li, Q.; Xu, M.; Jiang, C.; et al. Highly sensitive graphene-based ammonia sensor enhanced by electrophoretic deposition of MXene. Carbon 2023, 202, 561-70.
60. Wang, Y.; Wang, Y.; Jian, M.; Jiang, Q.; Li, X. MXene key composites: a new arena for gas sensors. Nanomicro. Lett. 2024, 16, 209.
61. Yang, Z.; Lv, S.; Zhang, Y.; et al. Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nanomicro. Lett. 2022, 14, 56.
62. Jin, L.; Wu, C.; Wei, K.; et al. Polymeric Ti3C2Tx MXene composites for room temperature ammonia sensing. ACS. Appl. Nano. Mater. 2020, 3, 12071-9.
63. Wu, G.; Du, H.; Pakravan, K.; et al. Polyaniline/Ti3C2Tx functionalized mask sensors for monitoring of CO2 and human respiration rate. Chem. Eng. J. 2023, 475, 146228.
64. Yang, Z.; Jiang, L.; Wang, J.; et al. Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application. Sens. Actuators. B. Chem. 2021, 326, 128828.
65. Kang, Z.; Ma, Y.; Tan, X.; et al. Mxene-silicon van der waals heterostructures for high-speed self-driven photodetectors. Adv. Elect. Mater. 2017, 3, 1700165.
66. Chertopalov, S.; Mochalin, V. N. Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films. ACS. Nano. 2018, 12, 6109-16.
67. Hu, C.; Du, Z.; Wei, Z.; Li, L.; Shen, G. Functionalized Ti3C2Tx MXene with layer-dependent band gap for flexible NIR photodetectors. Appl. Phys. Rev. 2023, 10, 021402.
68. Chen, J.; Zhu, Y.; Chang, X.; et al. Recent progress in essential functions of soft electronic skin. Adv. Funct. Mater. 2021, 31, 2104686.
69. Luo, H.; Pang, G.; Xu, K.; Ye, Z.; Yang, H.; Yang, G. A fully printed flexible sensor sheet for simultaneous proximity-pressure-temperature detection. Adv. Mater. Technol. 2021, 6, 2100616.
70. Chen, Y.; Gao, Z.; Zhang, F.; Wen, Z.; Sun, X. Recent progress in self-powered multifunctional e-skin for advanced applications. Exploration 2022, 2, 20210112.
71. Deng, S.; Li, Y.; Li, S.; et al. A multifunctional flexible sensor based on PI-MXene/SrTiO3 hybrid aerogel for tactile perception. Innovation 2024, 5, 100596.
72. Yu, Q.; Pan, J.; Jiang, Z.; Guo, Z.; Jiang, J. Stretchable multimodal textile sensor based on core-sheath CB/PDMS/MXene sensing yarn for efficiently distinguishing mechanical stimulus. Chem. Eng. J. 2024, 493, 152462.
73. Zhao, X. F.; Wen, X. H.; Zhong, S. L.; et al. Hollow MXene sphere-based flexible E-skin for multiplex tactile detection. ACS. Appl. Mater. Interfaces. 2021, 13, 45924-34.
74. Ma, M.; Zhang, Z.; Zhao, Z.; et al. Self-powered flexible antibacterial tactile sensor based on triboelectric-piezoelectric-pyroelectric multi-effect coupling mechanism. Nano. Energy. 2019, 66, 104105.
75. Cao, Y.; Guo, Y.; Chen, Z.; et al. Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detection. Nano. Energy. 2022, 92, 106689.
76. Wang, P.; Liu, G.; Sun, G.; Meng, C.; Shen, G.; Li, Y. An integrated bifunctional pressure-temperature sensing system fabricated on a breathable nanofiber and powered by rechargeable zinc-air battery for long-term comfortable health care monitoring. Adv. Fiber. Mater. 2024, 6, 1037-52.
77. Zhao, T.; Liu, H.; Yuan, L.; et al. A multi-responsive MXene-based actuator with integrated sensing function. Adv. Materials. Inter. 2022, 9, 2101948.
78. Yuan, T.; Yin, R.; Li, C.; Fan, Z.; Pan, L. Ti3C2Tx MXene-based all-resistive dual-mode sensor with near-zero temperature coefficient of resistance for crosstalk-free pressure and temperature detections. Chem. Eng. J. 2024, 487, 150396.
79. Li, F.; Liu, Y.; Shi, X.; et al. Printable and stretchable temperature-strain dual-sensing nanocomposite with high sensitivity and perfect stimulus discriminability. Nano. Lett. 2020, 20, 6176-84.
80. Gao, F. L.; Liu, J.; Li, X. P.; et al. Ti3C2Tx MXene-based multifunctional tactile sensors for precisely detecting and distinguishing temperature and pressure stimuli. ACS. Nano. 2023, 17, 16036-47.
81. Xu, Y.; Qiang, Q.; Zhao, Y.; et al. A super water-resistant MXene sponge flexible sensor for bifunctional sensing of physical and chemical stimuli. Lab. Chip. 2023, 23, 485-94.
82. Yang, Y.; Kong, L.; Huang, B.; Lin, B.; Fu, L.; Xu, C. A high-sensitive rubber-based sensor with integrated strain and humidity responses enabled by bionic gradient structure. Adv. Funct. Mater. 2024, 34, 2400789.
83. Xu, H.; Zheng, Y.; Yuan, Z.; Lou, Z.; Wang, L.; Han, W. High-performance flexible dual-function networks based on MXene hybrid film for human-machine interaction. J. Phys. D:. Appl. Phys. 2023, 56, 084004.
84. Wang, L.; Wang, D.; Wang, K.; Jiang, K.; Shen, G. Biocompatible MXene/chitosan-based flexible bimodal devices for real-time pulse and respiratory rate monitoring. ACS. Materials. Lett. 2021, 3, 921-9.
85. Kumar, A.; Kumar, R. R.; Shaikh, M. O.; et al. Wearable strain sensor utilizing the synergistic effect of Ti3C2Tx MXene/AgNW nanohybrid for point-of-care respiratory monitoring. Mater. Today. Chem. 2024, 37, 102024.
86. Wang, J.; Zhang, D.; Wang, D.; et al. Efficient fabrication of TPU/MXene/tungsten disulfide fibers with ultra-fast response for human respiratory pattern recognition and disease diagnosis via deep learning. ACS. Appl. Mater. Interfaces. 2023, 15, 37946-56.
87. Zhi, H.; Zhang, X.; Wang, F.; Wan, P.; Feng, L. Flexible Ti3C2Tx MXene/PANI/bacterial cellulose aerogel for e-Skins and gas sensing. ACS. Appl. Mater. Interfaces. 2021, 13, 45987-94.
88. Ni, Y.; Chen, J.; Chen, K. Flexible vanillin-polyacrylate/chitosan/mesoporous nanosilica-MXene composite film with self-healing ability towards dual-mode sensors. Carbohydr. Polym. 2024, 335, 122042.
89. Guo, Q.; Pang, W.; Xie, X.; Xu, Y.; Yuan, W. Stretchable, conductive and porous MXene-based multilevel structured fibers for sensitive strain sensing and gas sensing. J. Mater. Chem. A. 2022, 10, 15634-46.
90. Sharma, S.; Pradhan, G. B.; Jeong, S.; et al. Stretchable and all-directional strain-insensitive electronic glove for robotic skins and human-machine interfacing. ACS. Nano. 2023, 17, 8355-66.
91. Palumbo, A.; Li, Z.; Yang, E-H. Trends on carbon nanotube-based flexible and wearable sensors via electrochemical and mechanical stimuli: a review. IEEE. Sensors. J. 2022, 22, 20102-25.
92. Wang, R.; Sun, L.; Zhu, X.; et al. Carbon nanotube-based strain sensors: structures, fabrication, and applications. Adv. Mater. Technol. 2023, 8, 2200855.
93. Wei, C.; Zhou, H.; Wang, Z.; et al. Transient flexible multimodal sensors based on degradable fibrous nanocomposite mats for monitoring strain, temperature, and humidity. ACS. Appl. Polym. Mater. 2024, 6, 4014-24.
94. Sharma, N.; Nair, N. M.; Nagasarvari, G.; et al. A review of silver nanowire-based composites for flexible electronic applications. Flex. Print. Electron. 2022, 7, 014009.
95. Qin, H.; Hajiaghajani, A.; Escobar, A. R.; et al. Laser-induced graphene-based smart textiles for wireless cross-body metrics. ACS. Appl. Nano. Mater. 2023, 6, 19158-67.
96. Xu, K.; Cai, Z.; Luo, H.; et al. Toward integrated multifunctional laser-induced graphene-based skin-like flexible sensor systems. ACS. Nano. 2024, 18, 26435-76.
97. He, P.; Guo, R.; Hu, K.; et al. Tough and super-stretchable conductive double network hydrogels with multiple sensations and moisture-electric generation. Chem. Eng. J. 2021, 414, 128726.
98. Yin, H.; Liu, F.; Abdiryim, T.; Chen, J.; Liu, X. Sodium carboxymethyl cellulose and MXene reinforced multifunctional conductive hydrogels for multimodal sensors and flexible supercapacitors. Carbohydr. Polym. 2024, 327, 121677.
99. Hu, K.; Zhao, Z.; Wang, Y.; et al. A tough organohydrogel-based multiresponsive sensor for a triboelectric nanogenerator and supercapacitor toward wearable intelligent devices. J. Mater. Chem. A. 2022, 10, 12092-103.
100. Cai, Y.; Shen, J.; Yang, C. W.; et al. Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv. 2020, 6, eabb5367.
101. Zhao, W.; Zheng, Y.; Qian, J.; et al. AgNWs/MXene derived multifunctional knitted fabric capable of high electrothermal conversion efficiency, large strain and temperature sensing, and EMI shielding. J. Alloys. Compd. 2022, 923, 166471.
102. Chen, Y.; Li, Y.; Liu, Y.; Chen, P.; Zhang, C.; Qi, H. Holocellulose nanofibril-assisted intercalation and stabilization of Ti3C2Tx MXene inks for multifunctional sensing and EMI shielding applications. ACS. Appl. Mater. Interfaces. 2021, 13, 36221-31.
103. Zhao, Y.; Yuan, Y.; Zhang, H.; et al. A fully integrated electronic fabric-enabled multimodal flexible sensors for real-time wireless pressure-humidity-temperature monitoring. Int. J. Extrem. Manuf. 2024, 6, 065502.
104. Wang, Z.; Zhou, Z.; Li, C. L.; et al. A single electronic tattoo for multisensory integration. Small. Methods. 2023, 7, e2201566.
105. Zhang, D.; Yin, R.; Zheng, Y.; et al. Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and Joule heating performances. Chem. Eng. J. 2022, 438, 135587.
106. Yang, Y.; Li, B.; Wu, N.; et al. Biomimetic porous MXene-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS. Materials. Lett. 2022, 4, 2352-61.
107. Wang, H.; Jiang, Y.; Ma, Z.; et al. Hyperelastic, robust, fire-safe multifunctional MXene aerogels with unprecedented electromagnetic interference shielding efficiency. Adv. Funct. Mater. 2023, 33, 2306884.
108. Zhu, Y.; Liu, J.; Guo, T.; Wang, J. J.; Tang, X.; Nicolosi, V. Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS. Nano. 2021, 15, 1465-74.
109. Luo, J.; Gao, S.; Luo, H.; et al. Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem. Eng. J. 2021, 406, 126898.
110. Wu, H.; Xie, Y.; Ma, Y.; et al. Aqueous MXene/xanthan gum hybrid inks for screen-printing electromagnetic shielding, joule heater, and piezoresistive sensor. Small 2022, 18, e2107087.
111. Zhu, X.; Zhang, Y.; Liu, M.; Liu, Y. 2D titanium carbide MXenes as emerging optical biosensing platforms. Biosens. Bioelectron. 2021, 171, 112730.
112. Hou, M.; Yu, M.; Liu, W.; et al. Mxene hybrid conductive hydrogels with mechanical flexibility, frost-resistance, photothermoelectric conversion characteristics and their multiple applications in sensing. Chem. Eng. J. 2024, 483, 149299.
113. Jiang, W.; Zheng, T.; Wu, B.; et al. A versatile photodetector assisted by photovoltaic and bolometric effects. Light. Sci. Appl. 2020, 9, 160.
114. Yang, S.; Jiao, S.; Nie, Y.; et al. Facile synthesis of bismuth nanoparticles for efficient self-powered broadband photodetector application. J. Mater. Sci. Technol. 2022, 126, 161-8.
116. Wang, X.; Tao, Y.; Pan, S.; et al. Biocompatible and breathable healthcare electronics with sensing performances and photothermal antibacterial effect for motion-detecting. npj. Flex. Electron. 2022, 6, 228.
117. Cao, W.; Ma, C.; Mao, D.; Zhang, J.; Ma, M.; Chen, F. MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv. Funct. Mater. 2019, 29, 1905898.
118. Gao, Y.; Yan, C.; Huang, H.; et al. Microchannel‐confined MXene based flexible piezoresistive multifunctional micro‐force sensor. Adv. Funct. Mater. 2020, 30, 1909603.
119. Huang, C.; Xiao, M.; Li, Z.; Fu, Z.; Shi, R. Bioinspired breathable biodegradable bioelastomer-based flexible wearable electronics for high-sensitivity human-interactive sensing. Chem. Eng. J. 2024, 486, 150013.
120. Kuang, D.; Wang, L.; Guo, X.; et al. Facile hydrothermal synthesis of Ti3C2Tx-TiO2 nanocomposites for gaseous volatile organic compounds detection at room temperature. J. Hazard. Mater. 2021, 416, 126171.