REFERENCES

1. Luo, Y.; Abidian, M. R.; Ahn, J. H.; et al. Technology roadmap for flexible sensors. ACS. Nano. 2023, 17, 5211-95.

2. Lin, L.; Xie, Y.; Wang, S.; et al. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS. Nano. 2013, 7, 8266-74.

3. Xu, R.; Wang, W.; Sun, J.; et al. A flexible, conductive and simple pressure sensor prepared by electroless silver plated polyester fabric. Colloids. Surf. A. Physicochem. Eng. Asp. 2019, 578, 123554.

4. Cai, J.; Du, M.; Li, Z. Flexible temperature sensors constructed with fiber materials. Adv. Maters. Technol. 2022, 7, 2101182.

5. Lazarova, K.; Bozhilova, S.; Ivanova, S.; Christova, D.; Babeva, T. Flexible and transparent polymer-based optical humidity sensor. Sensors 2021, 21, 3674.

6. Delipinar, T.; Shafique, A.; Gohar, M. S.; Yapici, M. K. Fabrication and materials integration of flexible humidity sensors for emerging applications. ACS. Omega. 2021, 6, 8744-53.

7. Yuan, Z.; Shen, G.; Pan, C.; Wang, Z. L. Flexible sliding sensor for simultaneous monitoring deformation and displacement on a robotic hand/arm. Nano. Energy. 2020, 73, 104764.

8. Xu, L.; Dai, Z.; Duan, G.; et al. Micro/nano gas sensors: a new strategy towards in-situ wafer-level fabrication of high-performance gas sensing chips. Sci. Rep. 2015, 5, 10507.

9. Ansari, H. R.; Mirzaei, A.; Shokrollahi, H.; et al. Flexible/wearable resistive gas sensors based on 2D materials. J. Mater. Chem. C. 2023, 11, 6528-49.

10. Cui, X.; Xi, Y.; Tu, S.; Zhu, Y. An overview of flexible sensors from ionic liquid-based gels. TrAC. Trends. Anal. Chem. 2024, 174, 117662.

11. Li, B.; Sui, N.; Li, M.; et al. High-sensitivity and energy-efficient chloride ion sensors based on flexible printed carbon nanotube thin-film transistors for wearable electronics. Talanta 2024, 276, 126285.

12. Stekolshchikova, A. A.; Radaev, A. V.; Orlova, O. Y.; Nikolaev, K. G.; Skorb, E. V. Thin and flexible ion sensors based on polyelectrolyte multilayers assembled onto the carbon adhesive tape. ACS. Omega. 2019, 4, 15421-7.

13. Qin, J.; Tang, Y.; Zeng, Y.; Liu, X.; Tang, D. Recent advances in flexible sensors: from sensing materials to detection modes. TrAC. Trends. Anal. Chem. 2024, 181, 118027.

14. Wu, P.; Wang, Z.; Yao, X.; Fu, J.; He, Y. Recyclable conductive nanoclay for direct in situ printing flexible electronics. Mater. Horiz. 2021, 8, 2006-17.

15. Jin, T.; Sun, Z.; Li, L.; et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 2020, 11, 5381.

16. Yao, G.; Jiang, D.; Li, J.; et al. Self-activated electrical stimulation for effective hair regeneration via a wearable omnidirectional pulse generator. ACS. Nano. 2019, 13, 12345-56.

17. Invernizzi, F.; Dulio, S.; Patrini, M.; Guizzetti, G.; Mustarelli, P. Energy harvesting from human motion: materials and techniques. Chem. Soc. Rev. 2016, 45, 5455-73.

18. Xiong, W.; Zhu, C.; Guo, D.; et al. Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception. Nano. Energy. 2021, 90, 106550.

19. Qiu, L.; Lin, X.; Wang, Y.; Yuan, S.; Shi, W. A mechatronic smart skin of flight vehicle structures for impact monitoring of light weight and low-power consumption. Mech. Syst. Signal. Process. 2020, 144, 106829.

20. Huang, Y. A.; Zhu, C.; Xiong, W. N.; et al. Flexible smart sensing skin for “Fly-by-Feel” morphing aircraft. Sci. China. Technol. Sci. 2022, 65, 1-29.

21. Tao, J.; Dong, M.; Li, L.; et al. Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer. Microsyst. Nanoeng. 2020, 6, 62.

22. Liu, T.; Gou, G. Y.; Gao, F.; et al. Multichannel flexible pulse perception array for intelligent disease diagnosis system. ACS. Nano. 2023, 17, 5673-85.

23. Formica, D.; Schena, E. Smart sensors for healthcare and medical applications. Sensors 2021, 21, 543.

24. Oh, H.; Yi, G. C.; Yip, M.; Dayeh, S. A. Scalable tactile sensor arrays on flexible substrates with high spatiotemporal resolution enabling slip and grip for closed-loop robotics. Sci. Adv. 2020, 6, eabd7795.

25. Ra, Y.; La, M.; Cho, S.; Park, S. J.; Choi, D. Scalable batch fabrication of flexible, transparent and self-triggered tactile sensor array based on triboelectric effect. Int. J. of. Precis. Eng. Manuf-Green. Tech. 2021, 8, 519-31.

26. Park, M.; Park, Y. J.; Chen, X.; Park, Y. K.; Kim, M. S.; Ahn, J. H. MoS2-based tactile sensor for electronic skin applications. Adv. Mater. 2016, 28, 2556-62.

27. Shi, J.; Dai, Y.; Cheng, Y.; et al. Embedment of sensing elements for robust, highly sensitive, and cross-talk-free iontronic skins for robotics applications. Sci. Adv. 2023, 9, eadf8831.

28. Tian, X.; Cheng, G.; Wu, Z.; et al. High-resolution carbon-based tactile sensor array for dynamic pulse imaging. Adv. Funct. Mater. 2024, 34, 2406022.

29. Mei, S.; Yi, H.; Zhao, J.; et al. High-density, highly sensitive sensor array of spiky carbon nanospheres for strain field mapping. Nat. Commun. 2024, 15, 3752.

30. Tang, Y., L. Wang, S. Zhang, et al. Flexible active-matrix tactile sensor arrays with high density of 4096 pixels/cm2 and in-array sensitivity of 51 kPa-1. In 2024 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, December 7-11, 2024; IEEE: New York, USA, 2025; pp 1-4.

31. Li, Y.; Long, J.; Chen, Y.; Huang, Y.; Zhao, N. Crosstalk-free, high-resolution pressure sensor arrays enabled by high-throughput laser manufacturing. Adv. Mater. 2022, 34, e2200517.

32. Chen, X.; Luo, Y.; Chen, Y.; et al. Biomimetic contact behavior inspired tactile sensing array with programmable microdomes pattern by scalable and consistent fabrication. Adv. Sci. 2024, 11, e2408082.

33. Luo, H.; Chen, X.; Li, S.; et al. Bioinspired suspended sensing membrane array with modulable wedged-conductive channels for crosstalk-free and high-resolution detection. Adv. Sci. 2024, 11, e2403645.

34. Hu, S.; Wang, R.; Zhu, W.; et al. Sub-millimeter scale 3D integration strategy enables ultrahigh-density and ultralow-crosstalk flexible tactile sensor array for robotic E-skin application. Chem. Eng. J. 2024, 502, 157950.

35. Zhang, Y.; Lu, Q.; He, J.; et al. Localizing strain via micro-cage structure for stretchable pressure sensor arrays with ultralow spatial crosstalk. Nat. Commun. 2023, 14, 1252.

36. Li, G.; Zhang, Y.; Zhang, X.; et al. Filiform papillae-inspired wearable pressure sensor with high sensitivity and wide detection range. Adv. Funct. Mater. 2025, 35, 2414465.

37. Luo, Y.; Chen, X.; Tian, H.; et al. Gecko-inspired slant hierarchical microstructure-based ultrasensitive iontronic pressure sensor for intelligent interaction. Research 2022, 2022, 9852138.

38. Chen, R.; Luo, T.; Wang, J.; et al. Nonlinearity synergy: an elegant strategy for realizing high-sensitivity and wide-linear-range pressure sensing. Nat. Commun. 2023, 14, 6641.

39. Xiang, Q.; Zhao, G.; Tang, T.; et al. All-carbon piezoresistive sensor: enhanced sensitivity and wide linear range via multiscale design for wearable applications. Adv. Funct. Mater. 2025, 35, 2418706.

40. Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 2019, 52, 523-33.

41. Zhang, B.; He, J.; Lei, Q.; Li, D. Electrohydrodynamic printing of sub-microscale fibrous architectures with improved cell adhesion capacity. Virtual. Phys. Prototyp. 2020, 15, 62-74.

42. Cui, X.; Huang, F.; Zhang, X.; et al. Flexible pressure sensors via engineering microstructures for wearable human-machine interaction and health monitoring applications. iScience 2022, 25, 104148.

43. Ismail, S. N. A.; Nayan, N. A.; Mohammad, Haniff., M. A. S.; Jaafar, R.; May, Z. Wearable two-dimensional nanomaterial-based flexible sensors for blood pressure monitoring: a review. Nanomaterials 2023, 13, 852.

44. Jin, Y.; Xue, S.; He, Y. Flexible pressure sensors enhanced by 3D-printed microstructures. Adv. Mater. , 2025, e2500076.

45. Seesaard, T.; Wongchoosuk, C. Flexible and stretchable pressure sensors: from basic principles to state-of-the-art applications. Micromachines 2023, 14, 1638.

46. Kim, K.; Jang, W.; Cho, J. Y.; et al. Transparent and flexible piezoelectric sensor for detecting human movement with a boron nitride nanosheet (BNNS). Nano. Energy. 2018, 54, 91-8.

47. Kim, M.; Pyo, S.; Oh, Y.; et al. Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor. Smart. Mater. Struct. 2018, 27, 035001.

48. Pi, Z.; Zhang, J.; Wen, C.; Zhang, Z.; Wu, D. Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film. Nano. Energy. 2014, 7, 33-41.

49. Huang, Y.; Chen, S.; Li, Y.; Lin, Q.; Wu, Y.; Shi, Q. Flexible piezoelectric sensor based on PAN/MXene/PDA@ZnO composite film for human health and motion detection with fast response and highly sensitive. Chem. Eng. J. 2024, 488, 150997.

50. Ma, M.; Zhang, Z.; Zhao, Z.; et al. Self-powered flexible antibacterial tactile sensor based on triboelectric-piezoelectric-pyroelectric multi-effect coupling mechanism. Nano. Energy. 2019, 66, 104105.

51. Wang, C.; Xia, K.; Wang, H.; Liang, X.; Yin, Z.; Zhang, Y. Advanced carbon for flexible and wearable electronics. Adv. Mater. 2019, 31, e1801072.

52. Kim, S.; Amjadi, M.; Lee, T. I.; et al. Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices. ACS. Appl. Mater. Interfaces. 2019, 11, 23639-48.

53. Lu, Y.; Tian, M.; Sun, X.; et al. Highly sensitive wearable 3D piezoresistive pressure sensors based on graphene coated isotropic non-woven substrate. Compos. Part. A. Appl. Sci. Manuf. 2019, 117, 202-10.

54. Zhang, Y.; Wang, L.; Zhao, L.; et al. Flexible self-powered integrated sensing system with 3d periodic ordered black phosphorus@MXene thin-films. Adv. Mater. 2021, 33, e2007890.

55. Wang, J. C.; Karmakar, R. S.; Lu, Y. J.; Huang, C. Y.; Wei, K. C. Characterization of piezoresistive PEDOT:PSS pressure sensors with inter-digitated and cross-point electrode structures. Sensors 2015, 15, 818-31.

56. Lv, B.; Chen, X.; Liu, C. A highly sensitive piezoresistive pressure sensor based on graphene oxide/polypyrrole@polyurethane sponge. Sensors 2020, 20, 1219.

57. Wang, L.; Peng, H.; Wang, X.; et al. PDMS/MWCNT-based tactile sensor array with coplanar electrodes for crosstalk suppression. Microsyst. Nanoeng. 2016, 2, 16065.

58. Yang, L.; Liu, Y.; Filipe, C. D. M.; et al. Development of a highly sensitive, broad-range hierarchically structured reduced graphene oxide/polyHIPE foam for pressure sensing. ACS. Appl. Mater. Interfaces. 2019, 11, 4318-27.

59. Guo, J.; Tong, Y.; Guo, C.; et al. In-situ real-time monitoring of muscle energetics with soft neural-mechanical wearable sensing. Soft. Sci. 2025, 5, 20.

60. Hwang, J.; Kim, Y.; Yang, H.; Oh, J. H. Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor. Compos. Part. B. Eng. 2021, 211, 108607.

61. Park, S.; Kim, H.; Vosgueritchian, M.; et al. Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes. Adv. Mater. 2014, 26, 7324-32.

62. He, F.; You, X.; Gong, H.; et al. Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators. ACS. Appl. Mater. Interfaces. 2020, 12, 6442-50.

63. Huang, J.; Yang, X.; Yu, J.; et al. A universal and arbitrary tactile interactive system based on self-powered optical communication. Nano. Energy. 2020, 69, 104419.

64. Wang, H. L.; Kuang, S. Y.; Li, H. Y.; Wang, Z. L.; Zhu, G. Large-area integrated triboelectric sensor array for wireless static and dynamic pressure detection and mapping. Small 2020, 16, e1906352.

65. Peng, F.; Ren, K.; Chen, R.; et al. Vertically aligned polymer microfibril array for self-powered sensing. Nano. Energy. 2024, 124, 109440.

66. Ye, G.; Jin, T.; Wang, X.; et al. Multimodal integrated flexible electronic skin for physiological perception and contactless kinematics pattern recognition. Nano. Energy. 2023, 113, 108580.

67. Mu, Y.; Cheng, J.; Shi, W.; et al. Crosstalk-free hybrid integrated multimodal sensor for human temperature, humidity, and pressure monitoring. Cell. Rep. Phys. Sci. 2024, 5, 102223.

68. Yang, R.; Zhang, W.; Tiwari, N.; Yan, H.; Li, T.; Cheng, H. Multimodal sensors with decoupled sensing mechanisms. Adv. Sci. 2022, 9, e2202470.

69. Zhang, C.; Liu, C.; Li, B.; et al. Flexible multimodal sensing system based on a vertical stacking strategy for efficiently decoupling multiple signals. Nano. Lett. 2024, 24, 3186-95.

70. An, B. W.; Heo, S.; Ji, S.; Bien, F.; Park, J. U. Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat. Commun. 2018, 9, 2458.

71. Liu, W.; Chen, M.; Jiang, X.; et al. Dynamic keystroke-password recognition based on piezoelectric-triboelectric coupling sensor array with crosstalk-free for authentication system. Nano. Energy. 2025, 136, 110667.

72. Shi, M.; Zhang, J.; Chen, H.; et al. Self-powered analogue smart skin. ACS. nano. 2016, 10, 4083-91.

73. Wang, S.; Nie, Y.; Zhu, H.; et al. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci. Adv. 2022, 8, eabl5511.

74. Lin, W.; Wang, B.; Peng, G.; Shan, Y.; Hu, H.; Yang, Z. Skin-inspired piezoelectric tactile sensor array with crosstalk-free row+column electrodes for spatiotemporally distinguishing diverse stimuli. Adv. Sci. 2021, 8, 2002817.

75. Shi, X.; Chen, Y.; Jiang, H.; Yu, D.; Guo, X. High-density force and temperature sensing skin using micropillar array with image sensor. Adv. Intell. Syst. 2021, 3, 2000280.

76. Park, J.; Lee, Y.; Hong, J.; et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS. Nano. 2014, 8, 4689-97.

77. Niu, H.; Wei, X.; Li, H.; et al. Micropyramid array bimodal electronic skin for intelligent material and surface shape perception based on capacitive sensing. Adv. Sci. 2024, 11, e2305528.

78. Hua, Q.; Sun, J.; Liu, H.; et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244.

79. Yan, J.; Ding, J.; Cao, Y.; et al. Bioinspired cilia-based electronic skin for multimodal mechanical sensing via additive manufacturing. Soft. Sci. 2025, 5, 22.

80. Quan, Y.; Wei, X.; Xiao, L.; et al. Highly sensitive and stable flexible pressure sensors with micro-structured electrodes. J. Alloys. Compd. 2017, 699, 824-31.

81. Shuai, X.; Zhu, P.; Zeng, W.; et al. Highly sensitive flexible pressure sensor based on silver nanowires-embedded polydimethylsiloxane electrode with microarray structure. ACS. Appl. Mater. Interfaces. 2017, 9, 26314-24.

82. Huang, Y.; Peng, C.; Li, Y.; Yang, Y.; Feng, W. Elastomeric polymers for conductive layers of flexible sensors: materials, fabrication, performance, and applications. Aggregate 2023, 4, e319.

83. Gao, C.; Tong, W.; Liu, S.; Wang, X.; Zhang, Y. Fully degradable chitosan-based triboelectric nanogenerators applying in disposable medical products for information transfer. Nano. Energy. 2023, 117, 108876.

84. Yang, J. C.; Kim, J. O.; Oh, J.; et al. Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature. ACS. Appl. Mater. Interfaces. 2019, 11, 19472-80.

85. Cui, M.; Yang, W.; Guan, Y.; Zhang, Z. Fabrication of high precision grating patterns with a compliant nanomanipulator-based femtosecond laser direct writing system. Precis. Eng. 2022, 78, 60-9.

86. Chen, X.; Luo, F.; Yuan, M.; et al. A dual-functional graphene-based self-alarm health-monitoring E-skin. Adv. Funct. Mater. 2019, 29, 1904706.

87. Wei, Y.; Qiao, Y.; Jiang, G.; et al. A wearable skinlike ultra-sensitive artificial graphene throat. ACS. Nano. 2019, 13, 8639-47.

88. Yuan, Y.; Jiang, L.; Li, X.; et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nat. Commun. 2020, 11, 6185.

89. Kim, D.; Tcho, I.; Jin, I. K.; et al. Direct-laser-patterned friction layer for the output enhancement of a triboelectric nanogenerator. Nano. Energy. 2017, 35, 379-86.

90. Yan, Z.; Wang, L.; Xia, Y.; et al. Flexible high-resolution triboelectric sensor array based on patterned laser-induced graphene for self-powered real-time tactile sensing. Adv. Funct. Mater. 2021, 31, 2100709.

91. Shao, J. Y.; Chen, X. L.; Li, X. M.; Tian, H. M.; Wang, C. H.; Lu, B. H. Nanoimprint lithography for the manufacturing of flexible electronics. Sci. China. Technol. Sci. 2019, 62, 175-98.

92. Ouyang, Q.; Yao, C.; Chen, H.; et al. Machine learning-coupled tactile recognition with high spatiotemporal resolution based on cross-striped nanocarbon piezoresistive sensor array. Biosens. Bioelectron. 2024, 246, 115873.

93. Zhao, W.; Li, K.; Li, Z.; et al. Flexible pressure sensor arrays with high sensitivity and high density based on spinous microstructures for carved patterns recognition. Adv. Funct. Mater. 2025, 35, 2417238.

94. Liu, Y.; Hou, S.; Wang, X.; et al. Passive radiative cooling enables improved performance in wearable thermoelectric generators. Small 2022, 18, 2106875.

95. Kang, S. J.; Hong, H.; Jeong, C.; et al. Avoiding heating interference and guided thermal conduction in stretchable devices using thermal conductive composite islands. Nano. Res. 2021, 14, 3253-9.

96. Peng, Y.; Li, W.; Liu, B.; et al. Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat. Commun. 2021, 12, 6122.

97. Lee, S.; Byun, S. H.; Kim, C. Y.; et al. Beyond human touch perception: an adaptive robotic skin based on gallium microgranules for pressure sensory augmentation. Adv. Mater. 2022, 34, e2204805.

98. Jung, Y.; Choi, J.; Yoon, Y.; Park, H.; Lee, J.; Ko, S. H. Soft multi-modal thermoelectric skin for dual functionality of underwater energy harvesting and thermoregulation. Nano. Energy. 2022, 95, 107002.

99. Lee, J.; Sul, H.; Lee, W.; et al. Stretchable skin-like cooling/heating device for reconstruction of artificial thermal sensation in virtual reality. Adv. Funct. Mater. 2020, 30, 1909171.

100. Jung, Y.; Kim, M.; Kim, T.; Ahn, J.; Lee, J.; Ko, S. H. Functional materials and innovative strategies for wearable thermal management applications. Nanomicro. Lett. 2023, 15, 160.

101. Dong, S.; Guo, D.; Wang, Q.; et al. Fabrication of high-resolution, wide-range and low-crosstalk capacitive pressure sensing array for medical diagnosis. Mater. Des. 2023, 235, 112439.

102. Li, J.; Liu, Y.; Wu, M.; et al. Thin, soft, 3D printing enabled crosstalk minimized triboelectric nanogenerator arrays for tactile sensing. Fundam. Res. 2023, 3, 111-7.

103. Zhou, B.; Chen, Y.; Hu, K.; et al. Matrix-addressed crosstalk-free self-powered pressure sensor array based on electrospun isolated PVDF-TrFE cells. Sens. Actuators. A. Phys. 2022, 347, 113993.

104. Yuan, Y.; Xu, H.; Zheng, W.; et al. Bending and stretching-insensitive, crosstalk-free, flexible pressure sensor arrays for human-machine interactions. Adv. Mater. Technol. 2024, 9, 2301615.

105. Liu, K.; Wang, M.; Huang, C.; et al. Flexible bioinspired healable antibacterial electronics for intelligent human-machine interaction sensing. Adv. Sci. 2024, 11, e2305672.

106. Hu, F.; Zhou, Q.; Liu, R.; et al. Top-down architecture of magnetized micro-cilia and conductive micro-domes as fully bionic electronic skin for de-coupled multidimensional tactile perception. Mater. Horiz. 2025, 12, 418-33.

107. Zhang, J.; Yao, H.; Mo, J.; et al. Finger-inspired rigid-soft hybrid tactile sensor with superior sensitivity at high frequency. Nat. Commun. 2022, 13, 5076.

108. Wu, J.; Wu, Z.; Lu, X.; et al. Ultrastretchable and stable strain sensors based on antifreezing and self-healing ionic organohydrogels for human motion monitoring. ACS. Appl. Mater. Interfaces. 2019, 11, 9405-14.

109. Li, Y.; Lin, Q.; Sun, T.; Qin, M.; Yue, W.; Gao, S. A perceptual and interactive integration strategy toward telemedicine healthcare based on electroluminescent display and triboelectric sensing 3D stacked device. Adv. Funct. Mater. 2024, 34, 2402356.

110. Sundaram, S.; Kellnhofer, P.; Li, Y.; Zhu, J. Y.; Torralba, A.; Matusik, W. Learning the signatures of the human grasp using a scalable tactile glove. Nature 2019, 569, 698-702.

111. Li, S.; Chen, X.; Li, X.; et al. Bioinspired robot skin with mechanically gated electron channels for sliding tactile perception. Sci. Adv. 2022, 8, eade0720.

112. Xiong, W. N.; Guo, D. L.; Yang, Z. X.; Zhu, C.; Huang, Y. A. Conformable, programmable and step-linear sensor array for large-range wind pressure measurement on curved surface. Sci. China. Technol. Sci. 2020, 63, 2073-81.

113. Chen, X.; Xu, J.; Zhang, J.; et al. Conformal in situ strain monitoring enabled with transfer-printed ultrathin customized-crack sensing network. Device 2025, 100728.

114. Li, S.; Wang, H.; Ma, W.; et al. Monitoring blood pressure and cardiac function without positioning via a deep learning-assisted strain sensor array. Sci. Adv. 2023, 9, eadh0615.

115. He, S.; Gui, Y.; Wang, Y.; Cao, L.; He, G.; Tang, C. CuO/TiO2/MXene-based sensor and SMS-TENG array integrated inspection robots for self-powered ethanol detection and alarm at room temperature. ACS. Sens. 2024, 9, 1188-98.

116. Luo, L.; Wu, Z.; Ding, Q.; et al. In situ structural densification of hydrogel network and its interface with electrodes for high-performance multimodal artificial skin. ACS. Nano. 2024, 18, 15754-68.

117. Lee, S.; Kim, J. S.; Wang, Y.; et al. An ultrasoft nanomesh strain sensor with extreme mechanical durability against friction for on-skin applications. Device 2025, 3, 100559.

118. Gao, J.; Li, X.; Xu, L.; Yan, M.; Bi, H.; Wang, Q. Transparent multifunctional cellulose-based conductive hydrogel for wearable strain sensors and arrays. Carbohydr. Polym. 2024, 329, 121784.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/