REFERENCES
1. Pérez-lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy. Build. 2008, 40, 394-8.
2. Zhao, P.; Xie, Y.; Hu, S.; et al. Flexible and transparent bagasse aerogels for thermal regulation glazing. ACS. Sustainable. Chem. Eng. 2023, 11, 9711-20.
3. Smalyukh, I. I. Thermal management by engineering the alignment of nanocellulose. Adv. Mater. 2021, 33, e2001228.
4. Abraham, E.; Cherpak, V.; Senyuk, B.; et al. Highly transparent silanized cellulose aerogels for boosting energy efficiency of glazing in buildings. Nat. Energy. 2023, 8, 381-96.
5. Aguilar-Santana, J. L.; Jarimi, H.; Velasco-Carrasco, M.; Riffat, S. Review on window-glazing technologies and future prospects. Int. J. Low. Carbon. Technol. 2020, 15, 112-20.
6. Yan, M.; Pan, Y.; Cheng, X.; et al. “Robust-soft” anisotropic nanofibrillated cellulose aerogels with superior mechanical, flame-retardant, and thermal insulating properties. ACS. Appl. Mater. Interfaces. 2021, 13, 27458-70.
7. Sun, X.; Sun, H.; Wo, Z.; Su, Y.; Zhang, X. A dual-crosslinked macroporous aerogel with enhanced mechanical durability for efficient solar-driven desalination of seawater and wastewater. J. Mater. Chem. A. 2024, 12, 29538-49.
8. Wang, C.; Bai, L.; Xu, H.; Qin, S.; Li, Y.; Zhang, G. A review of high-temperature aerogels: composition, mechanisms, and properties. Gels 2024, 10, 286.
9. Zhao, S.; Siqueira, G.; Drdova, S.; et al. Additive manufacturing of silica aerogels. Nature 2020, 584, 387-92.
10. Cotana, F.; Pisello, A. L.; Moretti, E.; Buratti, C. Multipurpose characterization of glazing systems with silica aerogel: in-field experimental analysis of thermal-energy, lighting and acoustic performance. Build. Environ. 2014, 81, 92-102.
11. Lian, M.; Ding, W.; Liu, S.; et al. Highly porous yet transparent mechanically flexible aerogels realizing solar-thermal regulatory cooling. Nanomicro. Lett. 2024, 16, 131.
12. Illera, D.; Mesa, J.; Gomez, H.; Maury, H. Cellulose aerogels for thermal insulation in buildings: trends and challenges. Coatings 2018, 8, 345.
13. Long, L. Y.; Weng, Y. X.; Wang, Y. Z. Cellulose aerogels: synthesis, applications, and prospects. Polymers 2018, 10, 623.
14. Wang, X.; Yang, X.; Wu, Z.; et al. Enhanced mechanical stability and hydrophobicity of cellulose aerogels via quantitative doping of nano-lignin. Polymers 2023, 15, 1316.
15. Liu, J.; Liu, J.; Shi, F.; et al. A facile pore size controlling strategy to construct rigid/flexible silica aerogels for super heat insulation and VOCs adsorption. Chem. Eng. J. 2022, 450, 138196.
16. Hayase, G.; Kanamori, K.; Nakanishi, K. Structure and properties of polymethylsilsesquioxane aerogels synthesized with surfactant n-hexadecyltrimethylammonium chloride. Micropor. Mesopor. Mat. 2012, 158, 247-52.
17. Gupta, P.; Sathwane, M.; Chhajed, M.; et al. Surfactant assisted in situ synthesis of nanofibrillated cellulose/polymethylsilsesquioxane aerogel for tuning its thermal performance. Macromol. Rapid. Commun. 2023, 44, 2200628.
18. Payanda Konuk, O.; Alsuhile, A. A. A. M.; Yousefzadeh, H.; et al. The effect of synthesis conditions and process parameters on aerogel properties. Front. Chem. 2023, 11, 1294520.
19. Smith, D. S.; Alzina, A.; Bourret, J.; et al. Thermal conductivity of porous materials. J. Mater. Res. 2013, 28, 2260-72.
20. Harvey, A.; Backes, C.; Boland, J. B.; et al. Non-resonant light scattering in dispersions of 2D nanosheets. Nat. Commun. 2018, 9, 4553.
21. Wang, J.; Petit, D.; Ren, S. Transparent thermal insulation silica aerogels. Nanoscale. Adv. 2020, 2, 5504-15.
22. Li, C.; Chen, Z.; Dong, W.; et al. A review of silicon-based aerogel thermal insulation materials: performance optimization through composition and microstructure. J. Non. Cryst. Solids. 2021, 553, 120517.
23. Fu, Z.; Corker, J.; Papathanasiou, T.; et al. Critical review on the thermal conductivity modelling of silica aerogel composites. J. Build. Eng. 2022, 57, 104814.
24. Michael, M.; Favoino, F.; Jin, Q.; Luna-Navarro, A.; Overend, M. A systematic review and classification of glazing technologies for building façades. Energies 2023, 16, 5357.
25. Lee, O.; Lee, K.; Jin Yim, T.; Young Kim, S.; Yoo, K. Determination of mesopore size of aerogels from thermal conductivity measurements. J. Non. Cryst. Solids. 2002, 298, 287-92.
26. Roiban, L.; Foray, G.; Rong, Q.; et al. Advanced three dimensional characterization of silica-based ultraporous materials. RSC. Adv. 2016, 6, 10625-32.
27. Zhan, W.; Chen, L.; Kong, Q.; et al. The synthesis and polymer-reinforced mechanical properties of SiO2 aerogels: a review. Molecules 2023, 28, 5534.
28. Zhao, P.; Peng, J.; Momanyi, N. K.; et al. Black aerogel based on short-time high-flux He ion implantation. Adv. Funct. Mater. 2025, 35, 2408995.
29. Hunt, A. J. Light scattering for aerogel characterization. J. Non. Cryst. Solids. 1998, 225, 303-6.
30. Zhao, L.; Yang, S.; Bhatia, B.; Strobach, E.; Wang, E. N. Modeling silica aerogel optical performance by determining its radiative properties. AIP. Adv. 2016, 6, 025123.