REFERENCES

1. Lin, F.; Yang, W.; Lu, B.; et al. Muscle-inspired robust anisotropic cellulose conductive hydrogel for multidirectional strain sensors and implantable bioelectronics. Adv. Funct. Mater. 2025, 35, 2416419.

2. Li, H.; Cao, J.; Wan, R.; et al. PEDOTs-based conductive hydrogels: design, fabrications, and applications. Adv. Mater. 2025, 37, e2415151.

3. Zhang, Y.; Tan, Y.; Lao, J.; Gao, H.; Yu, J. Hydrogels for flexible electronics. ACS. Nano. 2023, 17, 9681-93.

4. Jin, J.; Wang, S.; Zhang, Z.; Mei, D.; Wang, Y. Progress on flexible tactile sensors in robotic applications on objects properties recognition, manipulation and human-machine interactions. Soft. Sci. 2023, 3, 8.

5. Liu, Y.; Tian, G.; Du, Y.; et al. Highly stretchable, low-hysteresis, and adhesive TA@MXene-composited organohydrogels for durable wearable sensors. Adv. Funct. Mater. 2024, 34, 2315813.

6. Niu, Y.; Liu, H.; He, R.; et al. The new generation of soft and wearable electronics for health monitoring in varying environment: from normal to extreme conditions. Mater. Today. 2020, 41, 219-42.

7. Zhu, C.; Chen, G.; Li, S.; et al. Breathable ultrathin film sensors based on nanomesh reinforced anti-dehydrating organohydrogels for motion monitoring. Adv. Funct. Mater. 2024, 34, 2411725.

8. Chen, G.; Zhang, Y.; Li, S.; et al. Flexible artificial tactility with excellent robustness and temperature tolerance based on organohydrogel sensor array for robot motion detection and object shape recognition. Adv. Mater. 2024, 36, e2408193.

9. Huang, X.; Zheng, Z.; Wang, H.; et al. A freeze-resistant, highly stretchable and biocompatible organohydrogel for non-delayed wearable sensing at ultralow-temperatures. Adv. Funct. Mater. 2024, 34, 2312149.

10. Sun, H.; Han, Y.; Huang, M.; et al. Highly stretchable, environmentally stable, self-healing and adhesive conductive nanocomposite organohydrogel for efficient multimodal sensing. Chem. Eng. J. 2024, 480, 148305.

11. Wu, J.; Huang, W.; Wu, Z.; et al. Hydrophobic and stable graphene-modified organohydrogel based sensitive, stretchable, and self-healable strain sensors for human-motion detection in various scenarios. ACS. Mater. Lett. 2022, 4, 1616-29.

12. Wang, W.; Zhou, H.; Xu, Z.; Li, Z.; Zhang, L.; Wan, P. Flexible conformally bioadhesive MXene hydrogel electronics for machine learning-facilitated human-interactive sensing. Adv. Mater. 2024, 36, e2401035.

13. Chae, A.; Murali, G.; Lee, S.; et al. Highly oxidation-resistant and self-healable MXene-based hydrogels for wearable strain sensor. Adv. Funct. Mater. 2023, 33, 2213382.

14. Gong, T.; Li, Z. N.; Liang, H.; et al. High-sensitivity wearable sensor based on a MXene nanochannel self-adhesive hydrogel. ACS. Appl. Mater. Interfaces. 2023, 15, 19349-61.

15. Zhang, H.; Shen, H.; Lan, J.; Wu, H.; Wang, L.; Zhou, J. Dual-network polyacrylamide/carboxymethyl chitosan-grafted-polyaniline conductive hydrogels for wearable strain sensors. Carbohydr. Polym. 2022, 295, 119848.

16. Ji, D.; Park, J. M.; Oh, M. S.; et al. Superstrong, superstiff, and conductive alginate hydrogels. Nat. Commun. 2022, 13, 3019.

17. Nie, Y.; Yue, D.; Xiao, W.; et al. Anti-freezing and self-healing nanocomposite hydrogels based on poly(vinyl alcohol) for highly sensitive and durable flexible sensors. Chem. Eng. J. 2022, 436, 135243.

18. Zhang, Q.; Liu, X.; Zhang, J.; Duan, L.; Gao, G. A highly conductive hydrogel driven by phytic acid towards a wearable sensor with freezing and dehydration resistance. J. Mater. Chem. A. 2021, 9, 22615-25.

19. Hu, R.; Zhao, J.; Wang, Y.; Li, Z.; Zheng, J. A highly stretchable, self-healing, recyclable and interfacial adhesion gel: preparation, characterization and applications. Chem. Eng. J. 2019, 360, 334-41.

20. Chen, Z.; Liu, S.; Kang, P.; et al. Decoupled temperature–pressure sensing system for deep learning assisted human–machine interaction. Adv. Funct. Mater. 2024, 34, 2411688.

21. Yang, C.; Huang, W.; Lin, Y.; et al. Stretchable MXene/carbon nanotube bilayer strain sensors with tunable sensitivity and working ranges. ACS. Appl. Mater. Interfaces. 2024, 16, 30274-83.

22. Dai, N.; Lei, I. M.; Li, Z.; Li, Y.; Fang, P.; Zhong, J. Recent advances in wearable electromechanical sensors - moving towards machine learning-assisted wearable sensing systems. Nano. Energy. 2023, 105, 108041.

23. Wang, M.; Li, L.; Zhang, T. Hysteresis-free, fatigue-resistant and self-adhesive conductive hydrogel electronics towards multimodal wearable application. Nano. Energy. 2024, 126, 109586.

24. Li, Q.; Zhi, X.; Xia, Y.; et al. Ultrastretchable high-conductivity MXene-based organohydrogels for human health monitoring and machine-learning-assisted recognition. ACS. Appl. Mater. Interfaces. 2023, 15, 19435-46.

25. Pi, M.; Qin, S.; Wen, S.; et al. Rapid gelation of tough and anti-swelling hydrogels under mild conditions for underwater communication. Adv. Funct. Mater. 2023, 33, 2210188.

26. Huang, Y.; Xiao, L.; Zhou, J.; et al. Strong tough polyampholyte hydrogels via the synergistic effect of ionic and metal–ligand bonds. Adv. Funct. Mater. 2021, 31, 2103917.

27. Han, Y.; Wang, Z.; Sun, H.; et al. Temperature-tolerant versatile conductive zwitterionic nanocomposite organohydrogel toward multisensory applications. ACS. Appl. Mater. Interfaces. 2024, 16, 38606-19.

28. Qin, Z.; Sun, X.; Yu, Q.; et al. Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors. ACS. Appl. Mater. Interfaces. 2020, 12, 4944-53.

29. Zhao, H.; Hao, S.; Fu, Q.; et al. Ultrafast fabrication of lignin-encapsulated silica nanoparticles reinforced conductive hydrogels with high elasticity and self-adhesion for strain sensors. Chem. Mater. 2022, 34, 5258-72.

30. Fan, X.; Ke, T.; Gu, H. Multifunctional, ultra-tough organohydrogel E-skin reinforced by hierarchical goatskin fibers skeleton for energy harvesting and self-powered monitoring. Adv. Funct. Mater. 2023, 33, 2304015.

31. Ni, Y.; Zang, X.; Yang, Y.; et al. Environmental stability stretchable organic hydrogel humidity sensor for respiratory monitoring with ultrahigh sensitivity. Adv. Funct. Mater. 2024, 34, 2402853.

32. Zhang, X.; Cui, C.; Chen, S.; et al. Adhesive ionohydrogels based on ionic liquid/water binary solvents with freezing tolerance for flexible ionotronic devices. Chem. Mater. 2022, 34, 1065-77.

33. Hao, S.; Meng, L.; Fu, Q.; Xu, F.; Yang, J. Low-temperature tolerance and conformal adhesion zwitterionic hydrogels as electronic skin for strain and temperature responsiveness. Chem. Eng. J. 2022, 431, 133782.

34. Gu, J.; Huang, J.; Chen, G.; et al. Multifunctional poly(vinyl alcohol) nanocomposite organohydrogel for flexible strain and temperature sensor. ACS. Appl. Mater. Interfaces. 2020, 12, 40815-27.

35. Zhang, Z.; Tang, L.; Chen, C.; et al. Liquid metal-created macroporous composite hydrogels with self-healing ability and multiple sensations as artificial flexible sensors. J. Mater. Chem. A. 2021, 9, 875-83.

36. Chen, H.; Huang, J.; Liu, J.; et al. High toughness multifunctional organic hydrogels for flexible strain and temperature sensor. J. Mater. Chem. A. 2021, 9, 23243-55.

37. Xie, Z.; Li, H.; Mi, H.; Feng, P.; Liu, Y.; Jing, X. Freezing-tolerant, widely detectable and ultra-sensitive composite organohydrogel for multiple sensing applications. J. Mater. Chem. C. 2021, 9, 10127-37.

38. Zhou, L.; Li, Y.; Xiao, J.; et al. Liquid metal-doped conductive hydrogel for construction of multifunctional sensors. Anal. Chem. 2023, 95, 3811-20.

39. Liu, Z.; Wang, Y.; Ren, Y.; et al. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper. Mater. Horiz. 2020, 7, 919-27.

40. Chen, L.; Chang, X.; Wang, H.; Chen, J.; Zhu, Y. Stretchable and transparent multimodal electronic-skin sensors in detecting strain, temperature, and humidity. Nano. Energy. 2022, 96, 107077.

41. Zhang, B.; Zhang, X.; Song, H.; Nguyen, D. H.; Zhang, C.; Liu, T. Strong-weak response network-enabled ionic conductive hydrogels with high stretchability, self-healability, and self-adhesion for ionic sensors. ACS. Appl. Mater. Interfaces. 2022, 14, 32551-60.

42. Hao, S.; Dai, R.; Fu, Q.; et al. A robust and adhesive hydrogel enables interfacial coupling for continuous temperature monitoring. Adv. Funct. Mater. 2023, 33, 2302840.

43. Ni, Y.; Zang, X.; Chen, J.; et al. Flexible MXene-based hydrogel enables wearable human–computer interaction for intelligent underwater communication and sensing rescue. Adv. Funct. Mater. 2023, 33, 2301127.

44. Lei, T.; Wang, Y.; Feng, Y.; et al. PNIPAAm-based temperature responsive ionic conductive hydrogels for flexible strain and temperature sensing. J. Colloid. Interface. Sci. 2025, 678, 726-41.

45. Qu, X.; Sun, H.; Kan, X.; et al. Temperature-sensitive and solvent-resistance hydrogel sensor for ambulatory signal acquisition in “moist/hot environment”. Nano. Res. 2023, 16, 10348-57.

46. Qu, X.; Liu, J.; Wang, S.; et al. Photothermal regulated multi-perceptive poly(ionic liquids) hydrogel sensor for bioelectronics. Chem. Eng. J. 2023, 453, 139785.

47. Li, Y.; Yang, D.; Wu, Z.; et al. Self-adhesive, self-healing, biocompatible and conductive polyacrylamide nanocomposite hydrogels for reliable strain and pressure sensors. Nano. Energy. 2023, 109, 108324.

48. Wan, R.; Yu, J.; Quan, Z.; et al. A reusable, healable, and biocompatible PEDOT:PSS hydrogel-based electrical bioadhesive interface for high-resolution electromyography monitoring and time–frequency analysis. Chem. Eng. J. 2024, 490, 151454.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/