REFERENCES
1. Mohan, B.; Singh, K.; Ahmadov, E.; Pombeiro, A. J.; Ren, P. Harvesting sustainable osmotic energy: the art of nanofluidic hydrogel membranes. J. Energy. Chem. 2025, 105, 577-94.
2. Mohan, B.; Singh, K.; Gupta, R. K.; Pombeiro, A. J.; Ren, P. Advanced materials for energy harvesting: exploring the potential of MOFs and MXene membranes in osmotic energy applications. Prog. Mater. Sci. 2025, 152, 101457.
3. Cui, Y.; Xu, Y.; Yao, H.; et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv. Mater. 2021, 33, 2102420.
4. Aydin, E.; Allen, T. G.; De Bastiani, M.; et al. Pathways toward commercial perovskite/silicon tandem photovoltaics. Science 2024, 383, eadh3849.
5. Chen, J.; Deger, C.; Su, Z. H.; et al. Magnetic-biased chiral molecules enabling highly oriented photovoltaic perovskites. Natl. Sci. Rev. 2024, 11, nwad305.
6. Zhang, W.; Zhang, Y.; Yan, X.; Hong, Y.; Yang, Z. Challenges and progress of chemical modification in piezoelectric composites and their applications. Soft. Sci. 2023, 3, 19.
7. Jarkov, V.; Califano, D.; Tsikriteas, Z. M.; Bowen, C. R.; Adams, C.; Khanbareh, H. 3D piezoelectric cellulose composites as advanced multifunctional implants for neural stem cell transplantation. Cell. Rep. Phys. Sci. 2025, 6, 102368.
8. Chen, A.; Su, J.; Li, Y.; et al. 3D/4D printed bio-piezoelectric smart scaffolds for next-generation bone tissue engineering. Int. J. Extrem. Manuf. 2023, 5, 032007.
9. Liu, X.; Huang, J.; Du, Y.; Wang, L.; Eklund, P. Enhanced thermoelectric properties of flexible self-supporting carbon nanotube film/polypyrrole composites. Cell. Rep. Phys. Sci. 2024, 5, 102163.
10. Tang, X.; Qi, C.; Sun, Q. Recent progress of biosensors based on thermoelectric effects for monitoring physical activity and environment monitoring. Soft. Sci. 2025, 5, 11.
11. Chang, Z.; Liu, K.; Sun, Z.; et al. First-principles investigation of the significant anisotropy and ultrahigh thermoelectric efficiency of a novel two-dimensional Ga2I2S2 at room temperature. Int. J. Extrem. Manuf. 2022, 4, 025001.
12. Chen, S.; Zhu, P.; Mao, L.; et al. Piezocatalytic medicine: an emerging frontier using piezoelectric materials for biomedical applications. Adv. Mater. 2023, 35, e2208256.
13. Ji, J.; Yang, C.; Shan, Y.; et al. Research trends of piezoelectric nanomaterials in biomedical engineering. Adv. NanoBiomed. Res. 2023, 3, 2200088.
14. Pan, X.; Wu, Y.; Wang, Y.; Zhou, G.; Cai, H. Mechanical energy harvesting based on the piezoelectric materials: recent advances and future perspectives. Chem. Eng. J. 2024, 497, 154249.
15. Mahanty, B.; Kumar Ghosh, S.; Lee, D. Advancements in polymer nanofiber-based piezoelectric nanogenerators: revolutionizing self-powered wearable electronics and biomedical applications. Chem. Eng. J. 2024, 495, 153481.
16. Tsikriteas, Z. M.; Roscow, J. I.; Bowen, C. R.; Khanbareh, H. Exploring lead-free materials for screen-printed piezoelectric wearable devices. Cell. Rep. Phys. Sci. 2024, 5, 101962.
17. Zhang, C.; Fan, W.; Wang, S.; Wang, Q.; Zhang, Y.; Dong, K. Recent progress of wearable piezoelectric nanogenerators. ACS. Appl. Electron. Mater. 2021, 3, 2449-67.
18. Li, Q.; Qin, Y.; Cheng, D.; et al. Moist-electric generator with efficient output and scalable integration based on carbonized polymer dot and liquid metal active electrode. Adv. Funct. Mater. 2023, 33, 2211013.
19. Izadgoshasb, I. Piezoelectric energy harvesting towards self-powered Internet of Things (IoT) sensors in smart cities. Sensors 2021, 21, 8332.
20. Guo, L.; Wang, H. Non-intrusive movable energy harvesting devices: materials, designs, and their prospective uses on transportation infrastructures. Renew. Sustain. Energy. Rev. 2022, 160, 112340.
21. Akin-Ponnle, A. E.; Carvalho, N. B. Energy harvesting mechanisms in a smart city - a review. Smart. Cities. 2021, 4, 476-98.
22. Cao, Y.; Xu, B.; Li, Z.; Fu, H. Advanced design of high-performance moist-electric generators. Adv. Funct. Mater. 2023, 33, 2301420.
23. Feng, J.; Wen, J.; Wang, S.; et al. Graphene oxide-based planar hygroelectric generator and its applications in a flexible self-powered sensing system. ACS. Appl. Nano. Mater. 2024, 7, 1646-54.
24. Feng, J.; Xiao, M.; Hui, Z.; et al. High-performance magnesium-carbon nanofiber hygroelectric generator based on interface-mediation-enhanced capacitive discharging effect. ACS. Appl. Mater. Interfaces. 2020, 12, 24289-97.
25. Shen, D.; Li, F.; Zhao, J.; et al. Ionic hydrogel-based moisture electric generators for underwater electronics. Adv. Sci. 2024, 11, e2408954.
26. Zhao, F.; Cheng, H.; Zhang, Z.; Jiang, L.; Qu, L. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351-7.
27. Sun, Z.; Wen, X.; Wang, L.; et al. Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience 2022, 2, 32-46.
28. Ni, F.; Xiao, P.; Zhang, C.; Chen, T. Hygroscopic polymer gels toward atmospheric moisture exploitations for energy management and freshwater generation. Matter 2022, 5, 2624-58.
29. Wei, Q.; Ge, W.; Yuan, Z.; et al. Moisture electricity generation: mechanisms, structures, and applications. Nano. Res. 2023, 16, 7496-510.
30. Shen, D.; Duley, W. W.; Peng, P.; et al. Moisture-enabled electricity generation: from physics and materials to self-powered applications. Adv. Mater. 2020, 32, e2003722.
31. Yan, H.; Liu, Z.; Qi, R. A review of humidity gradient-based power generator: devices, materials and mechanisms. Nano. Energy. 2022, 101, 107591.
32. Wang, H.; Sun, Y.; He, T.; et al. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nat. Nanotechnol. 2021, 16, 811-9.
33. He, T.; Wang, H.; Lu, B.; et al. Fully printed planar moisture-enabled electric generator arrays for scalable function integration. Joule 2023, 7, 935-51.
34. Liu, C.; Wan, T.; Guan, P.; et al. Unveil the triple roles of water molecule on power generation of MXene derived TiO2 based moisture electric generator. Adv. Energy. Mater. 2024, 14, 2400590.
35. Shen, D.; Xiao, M.; Zou, G.; Liu, L.; Duley, W. W.; Zhou, Y. N. Self-powered wearable electronics based on moisture enabled electricity generation. Adv. Mater. 2018, 30, 1705925.
36. Akbarisehat, A.; Zangari, G. Electricity generation via metal oxide-air moist interaction. Mater. Today. Commun. 2024, 40, 109744.
37. Dinh Trung, V.; Chen, S.; Xia, H.; Natsuki, T.; Ni, Q. A moisture-induced electric generator with high output voltage for self-powered wearable electronics. ChemNanoMat 2022, 8, e202200395.
38. Liu, H.; Han, Y.; Zhang, X.; et al. Graphene oxide sponge with gradient porosity for moisture-electric generator. J. Bionic. Eng. 2025, 22, 783-92.
39. Qi, X.; Miao, T.; Chi, C.; et al. Ultralight PEDOT:PSS/graphene oxide composite aerogel sponges for electric power harvesting from thermal fluctuations and moist environment. Nano. Energy. 2020, 77, 105096.
40. Huang, Y.; Cheng, H.; Shi, G.; Qu, L. Highly efficient moisture-triggered nanogenerator based on graphene quantum dots. ACS. Appl. Mater. Interfaces. 2017, 9, 38170-5.
41. Feng, Z.; Hu, G.; Zhu, R.; et al. Two-dimensional nanomaterials for moisture-electric generators: a review. ACS. Appl. Nano. Mater. 2022, 5, 12224-44.
42. Zhao, K.; Lee, J. W.; Yu, Z. G.; et al. Humidity-tolerant moisture-driven energy generator with MXene aerogel-organohydrogel bilayer. ACS. Nano. 2023, 17, 5472-85.
43. Li, L.; Chen, Z.; Hao, M.; et al. Moisture-driven power generation for multifunctional flexible sensing systems. Nano. Lett. 2019, 19, 5544-52.
44. Feng, J.; Wei, N.; Sun, Z.; Li, S.; Li, X.; Xia, H. Multifunctionally moist-electric generator for self-powered ultra-fast sensing based on laterally dual gradient. Nano. Energy. 2024, 123, 109409.
45. Zhang, R.; Chen, X.; Wan, Z.; et al. High-performance, flexible moist-electric generator for self-powered wearable wireless sensing. Chem. Eng. J. 2024, 502, 157695.
46. Gao, H.; Feng, Z.; Li, W.; et al. High-performance biomass moisture-electric generators derived from Distillers’ spent grains: synthesis, photothermal enhancement, and environmental sensing applications. Chem. Eng. J. 2025, 504, 158880.
47. Yan, R.; Zhang, X.; Wang, H.; et al. Autonomous, moisture-driven flexible electrogenerative dressing for enhanced wound healing. Adv. Mater. 2025, 37, e2418074.
48. Zhang, H.; He, N.; Wang, B.; et al. High-performance, highly stretchable, flexible moist-electric generators via molecular engineering of hydrogels. Adv. Mater. 2023, 35, 2300398.
49. Wang, Z.; Wang, S.; Zhang, L.; Liu, H.; Xu, X. Highly strong, tough, and cryogenically adaptive hydrogel ionic conductors via coordination interactions. Research 2024, 7, 0298.
50. Khan, M.; Rahman, T. U.; Sher, M.; et al. Flexible ionic conductive hydrogels with wrinkled texture for flexible strain transducer with language identifying diversity. Chem. Mater. 2024, 36, 4703-13.
51. Chen, D.; Bai, H.; Zhu, H.; Zhang, S.; Wang, W.; Dong, W. Anti-freezing, tough, and stretchable ionic conductive hydrogel with multi-crosslinked double-network for a flexible strain sensor. Chem. Eng. J. 2024, 480, 148192.
52. Wu, Z.; Liu, X.; Xu, Q.; et al. Poly(vinyl alcohol)/polyacrylamide double-network ionic conductive hydrogel strain sensor with high sensitivity and high elongation at break. J. Polym. Sci. 2024, 62, 4599-611.
53. Lei, T.; Wang, Y.; Feng, Y.; et al. PNIPAAm-based temperature responsive ionic conductive hydrogels for flexible strain and temperature sensing. J. Colloid. Interface. Sci. 2025, 678, 726-41.
54. Ara, L.; Sher, M.; Khan, M.; Rehman, T. U.; Shah, L. A.; Yoo, H. M. Dually-crosslinked ionic conductive hydrogels reinforced through biopolymer gellan gum for flexible sensors to monitor human activities. Int. J. Biol. Macromol. 2024, 276, 133789.
55. Chen, M.; Liu, H.; Chen, X.; et al. A novel multifunction of wearable ionic conductive hydrogel sensor for promoting infected wound healing. Appl. Mater. Today. 2024, 39, 102298.
56. He, P.; Wu, J.; Pan, X.; et al. Anti-freezing and moisturizing conductive hydrogels for strain sensing and moist-electric generation applications. J. Mater. Chem. A. 2020, 8, 3109-18.
57. Pan, X.; Wang, Q.; Guo, R.; et al. An adaptive ionic skin with multiple stimulus responses and moist-electric generation ability. J. Mater. Chem. A. 2020, 8, 17498-506.
58. He, P.; Guo, R.; Hu, K.; et al. Tough and super-stretchable conductive double network hydrogels with multiple sensations and moisture-electric generation. Chem. Eng. J. 2021, 414, 128726.
59. Yang, S.; Tao, X.; Chen, W.; et al. Ionic Hydrogel for efficient and scalable moisture-electric generation. Adv. Mater. 2022, 34, e2200693.
60. Cheng, Y.; Yang, C.; Zhu, T.; Wu, C.; Huang, J.; Lai, Y. Light-assisted polyproton dissociated PAAm-PA hydrogel-based moisture-driven electricity generator with a broad operating range. Adv. Funct. Mater. 2025, 35, 2415533.
61. Mo, J.; Wang, X.; Lin, X.; et al. Sulfated cellulose nanofibrils-based hydrogel moist-electric generator for energy harvesting. Chem. Eng. J. 2024, 491, 152055.
62. Yang, S.; Zhang, L.; Mao, J.; et al. Green moisture-electric generator based on supramolecular hydrogel with tens of milliamp electricity toward practical applications. Nat. Commun. 2024, 15, 3329.
63. Huang, Z.; Li, C.; Ying, W.; et al. A hydrogel-based moist-electric generator with superior energy output and environmental adaptability. Nano. Energy. 2024, 126, 109673.
64. Li, F.; Zhao, J.; Li, B.; et al. Water-triboelectrification-complemented moisture electric generator. ACS. Nano. 2024, 18, 30658-67.
65. Cheng, Y.; Zhu, T.; He, Q.; et al. Hydrogel-based moisture electric generator with high output performance induced by proton hopping. Adv. Funct. Mater. 2025, 2500186.
66. Huang, G.; Liu, J.; Zhang, H.; Zhang, W.; Deng, Y.; Sha, J. A double-gradient structured hydrogel for an efficient moisture-electric generator. Chem. Eng. J. 2025, 504, 158878.
67. Guchait, A.; Pramanik, S.; Goswami, D. K.; Chattopadhyay, S.; Mondal, T. Elastomeric ionic hydrogel-based flexible moisture-electric generator for next-generation wearable electronics. ACS. Appl. Mater. Interfaces. 2024, 16, 46844-57.
68. Fang, J.; Zhang, X.; Duan, P.; et al. Efficient and cold-tolerant moisture-enabled power generator combining ionic diode and ionic hydrogel. Mater. Horiz. 2024, 11, 1261-71.
69. Ma, G.; Li, W.; Zhou, X.; et al. PVA–PNIPAM hydrogel-based moisture-electric generators with tunable pore structures for enhanced power generation. ACS. Appl. Polym. Mater. 2024, 6, 7066-76.
70. Yu, F.; Wang, L.; Yang, X.; et al. Moisture-electric generators working in subzero environments based on laser-engraved hygroscopic hydrogel arrays. ACS. Nano. 2025, 19, 3807-17.
71. Wen, X.; Sun, Z.; Xie, X.; et al. High-performance fully stretchable moist-electric generator. Adv. Funct. Mater. 2024, 34, 2311128.
72. Zhang, H.; Qin, L.; Zhou, Y.; Huang, G.; Cai, H.; Sha, J. High-performance and anti-freezing moisture-electric generator combining ion-exchange membrane and ionic hydrogel. Small 2025, 21, e2410609.
73. Duan, W.; Shao, B.; Wang, Z.; et al. Silicon nanowire/ionic hydrogel-based hybrid moist-electric generators with enhanced voltage output and operational stability. Energy. Environ. Sci. 2024, 17, 3788-96.
74. Zhang, J.; Zhuang, J.; Lei, L.; Hou, Y. Rapid preparation of a self-adhesive PAA ionic hydrogel using lignin sulfonate–Al3+ composite systems for flexible moisture-electric generators. J. Mater. Chem. A. 2023, 11, 3546-55.