REFERENCES
1. Renbourn, E. T. The history of sweat and the sweat rash from earliest times to the end of the 18th century. J. Hist. Med. Allied. Sci. 1959, 14, 202-27.
2. Renbourn, E. T. The natural history of insensible perspiration: a forgotten doctrine of health and disease. Med. Hist. 1960, 4, 135-52.
3. El-Radhi AS. History of fever. In Clinical Manual of Fever in Children, Springer, Cham, 2018; pp. 287-97.
4. Baker, L. B.; Wolfe, A. S. Physiological mechanisms determining eccrine sweat composition. Eur. J. Appl. Physiol. 2020, 120, 719-52.
5. Polychronopoulou, E.; Braconnier, P.; Burnier, M. New insights on the role of sodium in the physiological regulation of blood pressure and development of hypertension. Front. Cardiovasc. Med. 2019, 6, 136.
6. Yuan, X.; Li, C.; Yin, X.; et al. Epidermal wearable biosensors for monitoring biomarkers of chronic disease in sweat. Biosensors 2023, 13, 313.
8. Mattar, A. C.; Leone, C.; Rodrigues, J. C.; Adde, F. V. Sweat conductivity: an accurate diagnostic test for cystic fibrosis?. J. Cyst. Fibros. 2014, 13, 528-33.
9. Collie, J. T.; Massie, R. J.; Jones, O. A.; LeGrys, V. A.; Greaves, R. F. Sixty-five years since the New York heat wave: advances in sweat testing for cystic fibrosis. Pediatr. Pulmonol. 2014, 49, 106-17.
10. Farrell, P. M.; White, T. B.; Derichs, N.; Castellani, C.; Rosenstein, B. J. Cystic fibrosis diagnostic challenges over 4 decades: historical perspectives and lessons learned. J. Pediatr. 2017, 181S, S16-26.
11. Hussain, J. N.; Mantri, N.; Cohen, M. M. Working up a good sweat - the challenges of standardising sweat collection for metabolomics analysis. Clin. Biochem. Rev. 2017, 38, 13-34.
12. Yeung, K. K.; Huang, T.; Hua, Y.; Zhang, K.; Yuen, M. M. F.; Gao, Z. Recent advances in electrochemical sensors for wearable sweat monitoring: a review. IEEE. Sensors. J. 2021, 21, 14522-39.
13. Chung, M.; Fortunato, G.; Radacsi, N. Wearable flexible sweat sensors for healthcare monitoring: a review. J. R. Soc. Interface. 2019, 16, 20190217.
14. Huestis, M. A.; Oyler, J. M.; Cone, E. J.; Wstadik, A. T.; Schoendorfer, D.; Joseph, R. E. . J. r. Sweat testing for cocaine, codeine and metabolites by gas chromatography-mass spectrometry. J. Chromatogr. B. Biomed. Sci. Appl. 1999, 733, 247-64.
15. Gao, W.; Brooks, G. A.; Klonoff, D. C. Wearable physiological systems and technologies for metabolic monitoring. J. Appl. Physiol. 2018, 124, 548-56.
16. Xu, J.; Fang, Y.; Chen, J. Wearable biosensors for non-invasive sweat diagnostics. Biosensors 2021, 11, 245.
17. Taylor, J. R.; Watson, I. D.; Tames, F. J.; Lowe, D. Detection of drug use in a methadone maintenance clinic: sweat patches versus urine testing. Addiction 1998, 93, 847-53.
18. Kintz, P.; Tracqui, A.; Mangin, P.; Edel, Y. Sweat testing in opioid users with a sweat patch. J. Anal. Toxicol. 1996, 20, 393-7.
19. De Giovanni N, Fucci N. The current status of sweat testing for drugs of abuse: a review. Curr. Med. Chem. 2013, 20, 545-61.
21. Currano, L. J.; Sage, F. C.; Hagedon, M.; Hamilton, L.; Patrone, J.; Gerasopoulos, K. Wearable sensor system for detection of lactate in sweat. Sci. Rep. 2018, 8, 15890.
22. Brothers, M. C.; DeBrosse, M.; Grigsby, C. C.; et al. Achievements and challenges for real-time sensing of analytes in sweat within wearable platforms. Acc. Chem. Res. 2019, 52, 297-306.
23. Childs, A.; Mayol, B.; Lasalde-Ramírez, J. A.; Song, Y.; Sempionatto, J. R.; Gao, W. Diving into sweat: advances, challenges, and future directions in wearable sweat sensing. ACS. Nano. 2024, 18, 24605-16.
24. Ma, S.; Wan, Z.; Wang, C.; et al. Ultra-sensitive and stable multiplexed biosensors array in fully printed and integrated platforms for reliable perspiration analysis. Adv. Mater. 2024, 36, e2311106.
25. Alsunaidi, B.; Althobaiti, M.; Tamal, M.; Albaker, W.; Al-Naib, I. A review of non-invasive optical systems for continuous blood glucose monitoring. Sensors 2021, 21, 6820.
26. Manjakkal, L.; Yin, L.; Nathan, A.; Wang, J.; Dahiya, R. Energy autonomous sweat-based wearable systems. Adv. Mater. 2021, 33, e2100899.
27. Xiao, G.; He, J.; Qiao, Y.; et al. Facile and low-cost fabrication of a thread/paper-based wearable system for simultaneous detection of lactate and pH in human sweat. Adv. Fiber. Mater. 2020, 2, 265-78.
28. Bandodkar, A. J.; Gutruf, P.; Choi, J.; et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 2019, 5, eaav3294.
29. Promphet, N.; Rattanawaleedirojn, P.; Siralertmukul, K.; et al. Non-invasive textile based colorimetric sensor for the simultaneous detection of sweat pH and lactate. Talanta 2019, 192, 424-30.
30. Wang, J.; Luo, Y.; Zhou, Z.; Xiao, J.; Xu, T.; Zhang, X. Epidermal wearable optical sensors for sweat monitoring. Commun. Mater. 2024, 5, 518.
31. Nie, N.; Gong, X.; Gong, C.; et al. A wearable thin-film hydrogel laser for functional sensing on skin. Anal. Chem. 2024, 96, 9159-66.
32. Chen, S.; Qiao, Z.; Niu, Y.; et al. Wearable flexible microfluidic sensing technologies. Nat. Rev. Bioeng. 2023, 1, 950-71.
33. Mohan, A.; Rajendran, V.; Mishra, R. K.; Jayaraman, M. Recent advances and perspectives in sweat based wearable electrochemical sensors. TrAC. Trends. Anal. Chem. 2020, 131, 116024.
34. Ghaffari, R.; Yang, D. S.; Kim, J.; et al. State of sweat: emerging wearable systems for real-time, noninvasive sweat sensing and analytics. ACS. Sens. 2021, 6, 2787-801.
35. Bandodkar, A. J.; Jeang, W. J.; Ghaffari, R.; Rogers, J. A. Wearable sensors for biochemical sweat analysis. Annu. Rev. Anal. Chem. 2019, 12, 1-22.
36. Choi, J.; Ghaffari, R.; Baker, L. B.; Rogers, J. A. Skin-interfaced systems for sweat collection and analytics. Sci. Adv. 2018, 4, eaar3921.
37. Zhang, S.; Tan, R.; Xu, X.; Iqbal, S.; Hu, J. Fibers/textiles-based flexible sweat sensors: a review. ACS. Mater. Lett. 2023, 5, 1420-40.
38. Parrilla, M.; Guinovart, T.; Ferré, J.; Blondeau, P.; Andrade, F. J. A wearable paper-based sweat sensor for human perspiration monitoring. Adv. Healthc. Mater. 2019, 8, e1900342.
39. Song, J.; Shi, R.; Bai, X.; Algadi, H.; Sridhar, D. An overview of surface with controllable wettability for microfluidic system, intelligent cleaning, water harvesting, and surface protection. Adv. Compos. Hybrid. Mater. 2023, 6, 603.
40. Hussain, S.; Zourob, M. Solid-state cholesteric liquid crystals as an emerging platform for the development of optical photonic sensors. Small 2024, 20, e2304590.
41. Myung, D.; Hussain, S.; Park, S. Photonic calcium and humidity array sensor prepared with reactive cholesteric liquid crystal mesogens. Sens. Actuators. B. Chem. 2019, 298, 126894.
42. Stumpel, J. E.; Gil, E. R.; Spoelstra, A. B.; Bastiaansen, C. W. M.; Broer, D. J.; Schenning, A. P. H. J. Stimuli-responsive materials based on interpenetrating polymer liquid crystal hydrogels. Adv. Funct. Mater. 2015, 25, 3314-20.
43. Wang, T.; Zhao, J.; Wu, L.; Liu, W.; Li, Y.; Yang, Y. Polymer network film with double reflection bands prepared using a thermochromic cholesteric liquid crystal mixture. ACS. Appl. Mater. Interfaces. 2024, 16, 18001-7.
44. Hussain, S.; Park, S. Y. Photonic cholesteric liquid-crystal elastomers with reprogrammable helical pitch and handedness. ACS. Appl. Mater. Interfaces. 2021, 13, 59275-87.
45. Yeh, T. Y.; Liu, M. F.; Lin, R. D.; Hwang, S. J. Alcohol selective optical sensor based on porous cholesteric liquid crystal polymer networks. Molecules 2022, 27, 773.
46. Hussain, S.; Park, S. Y. Sweat-based noninvasive skin-patchable urea biosensors with photonic interpenetrating polymer network films integrated into PDMS chips. ACS. Sens. 2020, 5, 3988-98.
47. Hussain, S.; Al-Tabban, A.; Zourob, M. Aptameric photonic structure-based optical biosensor for the detection of microcystin. Biosens. Bioelectron. 2024, 260, 116413.
48. Hussain, S.; Park, S. Optical glucose biosensor based on photonic interpenetrating polymer network with solid-state cholesteric liquid crystal and cationic polyelectrolyte. Sens. Actuators. B. Chem. 2020, 316, 128099.
49. Noh, K.; Park, S. Biosensor array of interpenetrating polymer network with photonic film templated from reactive cholesteric liquid crystal and enzyme-immobilized hydrogel polymer. Adv. Funct. Mater. 2018, 28, 1707562.
50. Munir, S.; Hussain, S.; Park, S. Y. Patterned photonic array based on an intertwined polymer network functionalized with a nonenzymatic moiety for the visual detection of glucose. ACS. Appl. Mater. Interfaces. 2019, 11, 37434-41.
51. Zhang, P.; de, H. a. a. n. . L. T.; Debije, M. G.; Schenning, A. P. H. J. Liquid crystal-based structural color actuators. Light. Sci. Appl. 2022, 11, 248.
52. Laochai, T.; Moonla, C.; Moon, J.; et al. Touch–based potentiometric sensors for simultaneous detection of urea and ammonium from fingertip sweat. Sens. Actuators. B. Chem. 2024, 413, 135898.
53. Lee, H.; Song, C.; Hong, Y. S.; et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 2017, 3, e1601314.
54. Salatiello, S.; Spinelli, M.; Cassiano, C.; Amoresano, A.; Marini, F.; Cinti, S. Sweat urea bioassay based on degradation of Prussian Blue as the sensing architecture. Anal. Chim. Acta. 2022, 1210, 339882.