1. Yu, Z.; Zahid, A.; Taha, A.; et al. An intelligent implementation of multi-sensing data fusion with neuromorphic computing for human activity recognition. IEEE. Internet. Things. J. 2023, 10, 1124-33.
2. Ji, X.; Zhao, X.; Tan, M. C.; Zhao, R. Artificial perception built on memristive system: visual, auditory, and tactile sensations. Adv. Intell. Syst. 2020, 2, 1900118.
3. Lee, J. P.; Jang, H.; Jang, Y.; et al. Encoding of multi-modal emotional information via personalized skin-integrated wireless facial interface. Nat. Commun. 2024, 15, 530.
4. Xiong, W.; Zhu, C.; Guo, D.; et al. Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception. Nano. Energy. 2021, 90, 106550.
5. Zhao, C.; Park, J.; Root, S. E.; Bao, Z. Skin-inspired soft bioelectronic materials, devices and systems. Nat. Rev. Bioeng. 2024, 2, 671-90.
6. Wan, T.; Shao, B.; Ma, S.; Zhou, Y.; Li, Q.; Chai, Y. In-sensor computing: materials, devices, and integration technologies. Adv. Mater. 2023, 35, 2203830.
7. Wang, Z.; Wang, Y.; Zhang, X.; et al. Flexible photovoltaic micro-power system enabled with a customized MPPT. Appl. Energy. 2024, 367, 123425.
9. Cox, D. D.; Dean, T. Neural networks and neuroscience-inspired computer vision. Curr. Biol. 2014, 24, R921-9.
10. Yoon, S. J.; Park, J. T.; Lee, Y. K. The neuromorphic computing for biointegrated electronics. Soft. Sci. 2024, 4, 30.
11. Han, J.; Yun, S.; Lee, S.; Yu, J.; Choi, Y. A review of artificial spiking neuron devices for neural processing and sensing. Adv. Funct. Mater. 2022, 32, 2204102.
12. Torricelli, F.; Adrahtas, D. Z.; Bao, Z.; et al. Electrolyte-gated transistors for enhanced performance bioelectronics. Nat. Rev. Methods. Primers. 2021, 1, 66.
13. Jang, Y.; Park, J.; Kang, J.; Lee, S. Amorphous InGaZnO (a-IGZO) synaptic transistor for neuromorphic computing. ACS. Appl. Electron. Mater. 2022, 4, 1427-48.
14. Song, M. K.; Kang, J. H.; Zhang, X.; et al. Recent advances and future prospects for memristive materials, devices, and systems. ACS. Nano. 2023, 17, 11994-2039.
15. Tong, P.; Wang, W.; Xu, H.; et al. Highly parallel writing strategy based on diagonal-gates-connection 1T1R arrays. IEEE. Trans. Electron. Devices. 2022, 69, 6693-8.
16. Song, H.; Lee, M. G.; Kim, G.; et al. Fully memristive elementary motion detectors for a maneuver prediction. Adv. Mater. 2024, 36, e2309708.
17. Wu, Z.; Lu, J.; Shi, T.; et al. A habituation sensory nervous system with memristors. Adv. Mater. 2020, 32, e2004398.
18. Li, Q. X.; Liu, Y. L.; Cao, Y. Y.; et al. Ferroelectric artificial synapse for neuromorphic computing and flexible applications. Fundam. Res. 2023, 3, 960-6.
19. Chen, C.; Zhou, Y.; Tong, L.; Pang, Y.; Xu, J. Emerging 2D ferroelectric devices for in-sensor and in-memory computing. Adv. Mater. 2025, 37, e2400332.
20. Demasius, K.; Kirschen, A.; Parkin, S. Energy-efficient memcapacitor devices for neuromorphic computing. Nat. Electron. 2021, 4, 748-56.
21. Teja Nibhanupudi, S. S.; Roy, A.; Veksler, D.; et al. Ultra-fast switching memristors based on two-dimensional materials. Nat. Commun. 2024, 15, 2334.
22. Fu, G. E.; Yang, H.; Zhao, W.; Samorì, P.; Zhang, T. 2D conjugated polymer thin films for organic electronics: opportunities and challenges. Adv. Mater. 2024, 36, e2311541.
23. Lv, Z.; Jiang, M. H.; Liu, H. Y.; et al. Temperature-resilient polymeric memristors for effective deblurring in static and dynamic imaging. Adv. Funct. Mater. 2025, 2424382.
24. Liu, Y.; Fischer, F.; Hu, H.; et al. Inkjet printed metal–organic frameworks for non-volatile memory devices suitable for printed RRAM. Adv. Funct. Mater. 2025, 35, 2412372.
25. Qian, F.; Bu, X.; Wang, J.; Lv, Z.; Han, S.; Zhou, Y. Evolutionary 2D organic crystals for optoelectronic transistors and neuromorphic computing. Neuromorph. Comput. Eng. 2022, 2, 012001.
26. Duan, X.; Cao, Z.; Gao, K.; et al. Memristor-based neuromorphic chips. Adv. Mater. 2024, 36, e2310704.
27. Kim, T.; Hu, S.; Kim, J.; et al. Spiking neural network (SNN) with memristor synapses having non-linear weight update. Front. Comput. Neurosci. 2021, 15, 646125.
28. Krauhausen, I.; Coen, C.; Spolaor, S.; Gkoupidenis, P.; van de Burgt, Y. Brain-inspired organic electronics: merging neuromorphic computing and bioelectronics using conductive polymers. Adv. Funct. Mater. 2024, 34, 2307729.
29. Kotsiantis, S. B.; Zaharakis, I. D.; Pintelas, P. E. Machine learning: a review of classification and combining techniques. Artif. Intell. Rev. 2006, 26, 159-90.
30. Peng, H.; Gan, L.; Guo, X. Memristor-based spiking neural networks: cooperative development of neural network architecture/algorithms and memristors. Chip 2024, 3, 100093.
31. Chen, J.; Skatchkovsky, N.; Simeone, O. Neuromorphic integrated sensing and communications. IEEE. Wireless. Commun. Lett. 2023, 12, 476-80.
32. Chen, J.; Skatchkovsky, N.; Simeone, O. Neuromorphic Wireless cognition: event-driven semantic communications for remote inference. IEEE. Trans. Cogn. Commun. Netw. 2023, 9, 252-65.
33. Ng, S. E.; Vishwanath, S. K.; Yang, J.; et al. Advances in multi-terminal transistors as reconfigurable interconnections for neuromorphic sensing and processing. Adv. Elect. Mater. 2024, 10, 2300540.
34. Fang, S. L.; Han, C. Y.; Han, Z. R.; et al. An artificial spiking afferent neuron system achieved by 1M1S for neuromorphic computing. IEEE. Trans. Electron. Devices. 2022, 69, 2346-52.
35. Jang, H.; Lee, J.; Beak, C. J.; Biswas, S.; Lee, S. H.; Kim, H. Flexible neuromorphic electronics for wearable near-sensor and in-sensor computing systems. Adv. Mater. 2025, 37, e2416073.
36. Zhang, H.; Qiu, P.; Lu, Y.; et al. In-sensor computing realization using fully CMOS-compatible TiN/HfOx-based neuristor array. ACS. Sens. 2023, 8, 3873-81.
37. Zhu, Y.; Mao, H.; Zhu, Y.; et al. CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review. Int. J. Extrem. Manuf. 2023, 5, 042010.
38. Schuman, C. D.; Kulkarni, S. R.; Parsa, M.; Mitchell, J. P.; Date, P.; Kay, B. Opportunities for neuromorphic computing algorithms and applications. Nat. Comput. Sci. 2022, 2, 10-9.
39. Sandamirskaya, Y.; Kaboli, M.; Conradt, J.; Celikel, T. Neuromorphic computing hardware and neural architectures for robotics. Sci. Robot. 2022, 7, eabl8419.
40. Kong, H.; Li, W.; Song, Z.; Niu, L. Recent advances in multimodal sensing integration and decoupling strategies for tactile perception. Mater. Futures. 2024, 3, 022501.
41. Liu, Y.; Wang, J.; Liu, T.; et al. Triboelectric tactile sensor for pressure and temperature sensing in high-temperature applications. Nat. Commun. 2025, 16, 383.
42. Neupane, B.; Aryal, J.; Rajabifard, A. CNNs for remote extraction of urban features: a survey-driven benchmarking. Expert. Syst. Appl. 2024, 255, 124751.
43. Zheng, X.; Zhang, L.; Xu, C.; Chen, X.; Cui, Z. An attribution graph-based interpretable method for CNNs. Neural. Netw. 2024, 179, 106597.
44. Xu, K.; Cai, Z.; Luo, H.; et al. Toward integrated multifunctional laser-induced graphene-based skin-like flexible sensor systems. ACS. Nano. 2024, 18, 26435-76.
45. Su, Y.; Otake, K. I.; Zheng, J. J.; et al. Switching molecular recognition selectivities by temperature in a diffusion-regulatory porous material. Nat. Commun. 2024, 15, 144.
46. Casanova-Chafer, J. Roadmap for borophene gas sensors. ACS. Sens. 2025, 10, 76-99.
47. Wang, W.; Yao, D.; Wang, H.; et al. A breathable, stretchable, and self-calibrated multimodal electronic skin based on hydrogel microstructures for wireless wearables. Adv. Funct. Mater. 2024, 34, 2316339.
48. Ferreira, R. G.; Silva, A. P.; Nunes-Pereira, J. Current on-skin flexible sensors, materials, manufacturing approaches, and study trends for health monitoring: a review. ACS. Sens. 2024, 9, 1104-33.
49. Ahmed, S. M.; Soin, N.; Hatta, S. F. W. M.; Wahab, Y. A. Flexible CNT/silicon piezo-resistive strain sensors geometrical influences on sensitivity for human motion detection. J. Comput. Electron. 2024, 23, 456-66.
50. Joshi, A.; Kanungo, D. P.; Panigrahi, R. K. Multi-frame fringing field capacitive soil moisture sensor with enhanced sensitivity and penetration depth. IEEE. Trans. Instrum. Meas. 2024, 73, 1-13.
51. Xiong, J.; Cui, P.; Chen, X.; et al. Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nat. Commun. 2018, 9, 4280.
52. Liu, Z.; Chen, D.; Ma, J.; Wang, T.; Jia, D.; Liu, Y. Multimodal capacitive proximity sensing array with programmable spatial resolution and dynamic detection range. Sens. Actuators. A. Phys. 2024, 370, 115279.
53. Wang, L.; Qi, X.; Li, C.; Wang, Y. Multifunctional tactile sensors for object recognition. Adv. Funct. Mater. 2024, 34, 2409358.
54. Dai, Y.; Yang, C.; Liu, K.; Liu, A.; Liu, Y. TimeDDPM: time series augmentation strategy for industrial soft sensing. IEEE. Sensors. J. 2024, 24, 2145-53.
55. Geng, H.; Liu, H.; Ma, L.; Yi, X. Multi-sensor filtering fusion meets censored measurements under a constrained network environment: advances, challenges and prospects. Int. J. Syst. Sci. 2021, 52, 3410-36.
56. Li, D.; Yao, K.; Gao, Z.; Liu, Y.; Yu, X. Recent progress of skin-integrated electronics for intelligent sensing. Light. Adv. Manuf. 2021, 2, 39-58.
57. Yuan, X.; Ou, C.; Wang, Y.; Yang, C.; Gui, W. A layer-wise data augmentation strategy for deep learning networks and its soft sensor application in an industrial hydrocracking process. IEEE. Trans. Neural. Netw. Learn. Syst. 2021, 32, 3296-305.
58. Naqi, M.; Yu, Y.; Cho, Y.; et al. Integration of IGZO-based memristor and Pt-based temperature sensor for enhanced artificial nociceptor system. Mater. Today. Nano. 2024, 27, 100491.
59. Wei, Y.; Xiang, L.; Zhu, P.; Qian, Y.; Zhao, B.; Chen, G. Multifunctional organohydrogel-based ionic skin for capacitance and temperature sensing toward intelligent skin-like devices. Chem. Mater. 2021, 33, 8623-34.
60. Liu, Z.; Tian, B.; Zhang, B.; et al. A thin-film temperature sensor based on a flexible electrode and substrate. Microsyst. Nanoeng. 2021, 7, 42.
61. Ma, C.; Xu, D.; Huang, Y. C.; et al. Robust flexible pressure sensors made from conductive micropyramids for manipulation tasks. ACS. Nano. 2020, 14, 12866-76.
62. Ji, J.; Zhao, W.; Wang, Y.; Li, Q.; Wang, G. Templated laser-induced-graphene-based tactile sensors enable wearable health monitoring and texture recognition via deep neural network. ACS. Nano. 2023, 17, 20153-66.
63. Zou, Y.; Gai, Y.; Tan, P.; et al. Stretchable graded multichannel self-powered respiratory sensor inspired by shark gill. Fundam. Res. 2022, 2, 619-28.
64. Xie, X.; Wang, Q.; Zhao, C.; et al. Neuromorphic computing-assisted triboelectric capacitive-coupled tactile sensor array for wireless mixed reality interaction. ACS. Nano. 2024, 18, 17041-52.
65. Wu, C.; Kim, T. W.; Park, J. H.; et al. Self-powered tactile sensor with learning and memory. ACS. Nano. 2020, 14, 1390-8.
66. Chen, S.; Xin, S.; Yang, L.; Guo, Y.; Zhang, W.; Sun, K. Multi-sized planar capacitive pressure sensor with ultra-high sensitivity. Nano. Energy. 2021, 87, 106178.
67. Lee, H. K.; Chung, J.; Chang, S.; Yoon, E. Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors. J. Microelectromech. Syst. 2008, 17, 934-42.
68. Zhu, Y.; Wu, Y.; Wang, G.; et al. A flexible capacitive pressure sensor based on an electrospun polyimide nanofiber membrane. Org. Electron. 2020, 84, 105759.
69. Li, H.; Wang, Z.; Sun, M.; et al. Breathable and skin-conformal electronics with hybrid integration of microfabricated multifunctional sensors and kirigami-structured nanofibrous substrates. Adv. Funct. Mater. 2022, 32, 2202792.
70. Lee, J. H.; Cho, K.; Kim, J. K. Age of flexible electronics: emerging trends in soft multifunctional sensors. Adv. Mater. 2024, 36, e2310505.
71. Luo, H.; Pang, G.; Xu, K.; Ye, Z.; Yang, H.; Yang, G. A fully printed flexible sensor sheet for simultaneous proximity–pressure–temperature detection. Adv. Mater. Technol. 2021, 6, 2100616.
72. Yang, Q.; Ye, Z.; Wu, R.; et al. A highly sensitive iontronic bimodal sensor with pressure-temperature discriminability for robot skin. Adv. Mater. Technol. 2023, 8, 2300561.
73. Liu, Z.; Hu, X.; Bo, R.; et al. A three-dimensionally architected electronic skin mimicking human mechanosensation. Science 2024, 384, 987-94.
74. Li, P.; Xie, L.; Su, M.; et al. Skin-inspired large area iontronic pressure sensor with ultra-broad range and high sensitivity. Nano. Energy. 2022, 101, 107571.
75. Fang, Z.; Yu, H. Y.; Li, X.; Singh, N.; Lo, G. Q.; Kwong, D. L. HfOx/TiOx/HfOx/TiOx multilayer-based forming-free RRAM devices with excellent uniformity. IEEE. Electron. Device. Lett. 2011, 32, 566-8.
76. Fan, J.; Feng, J.; Gao, Y.; et al. PEDOT-ZnO nanoparticle hybrid film-based memristors for synapse emulation in neuromorphic computing applications. ACS. Appl. Nano. Mater. 2024, 7, 5661-8.
77. Xu, Y.; Wang, H.; Ye, D.; Yang, R.; Huang, Y.; Miao, X. Electrohydrodynamically printed flexible organic memristor for leaky integrate and fire neuron. IEEE. Electron. Device. Lett. 2022, 43, 116-9.
78. Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The missing memristor found. Nature 2008, 453, 80-3.
79. Duan, Q.; Jing, Z.; Zou, X.; et al. Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks. Nat. Commun. 2020, 11, 3399.
80. Xue, F.; Chen, L.; Wang, L.; et al. MoS2 tribotronic transistor for smart tactile switch. Adv. Funct. Mater. 2016, 26, 2104-9.
81. Chen, L.; Wen, C.; Zhang, S.; Wang, Z. L.; Zhang, Z. Artificial tactile peripheral nervous system supported by self-powered transducers. Nano. Energy. 2021, 82, 105680.
82. Chen, L.; Karilanova, S.; Chaki, S.; et al. Spike timing-based coding in neuromimetic tactile system enables dynamic object classification. Science 2024, 384, 660-5.
83. Zhong, D.; Wu, C.; Jiang, Y.; et al. High-speed and large-scale intrinsically stretchable integrated circuits. Nature 2024, 627, 313-20.
84. Wang, W.; Jiang, Y.; Zhong, D.; et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 2023, 380, 735-42.
85. Schwartz, G.; Tee, B. C.; Mei, J.; et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 2013, 4, 1859.
86. Lee, Y.; Oh, J. Y.; Lee, T. Neuromorphic skin based on emerging artificial synapses. Adv. Mater. Technol. 2022, 7, 2200193.
87. Su, Q.; Zou, Q.; Li, Y.; et al. A stretchable and strain-unperturbed pressure sensor for motion interference-free tactile monitoring on skins. Sci. Adv. 2021, 7, eabi4563.
88. Kweon, H.; Kim, J. S.; Kim, S.; et al. Ion trap and release dynamics enables nonintrusive tactile augmentation in monolithic sensory neuron. Sci. Adv. 2023, 9, eadi3827.
89. Sun, F.; Lu, Q.; Hao, M.; et al. An artificial neuromorphic somatosensory system with spatio-temporal tactile perception and feedback functions. npj. Flex. Electron. 2022, 6, 202.
90. Yang, C.; Wang, H.; Zhou, G.; et al. A multifunctional memristor with coexistence of NDR and RS behaviors for logic operation and somatosensory temperature sensing applications. Nano. Today. 2024, 57, 102382.
91. Wang, L.; Zhang, P.; Gao, Z.; Wen, D. Artificial tactile sensing neuron with tactile sensing ability based on a chitosan memristor. Adv. Sci. 2024, 11, e2308610.
92. Xie, Z.; Zhu, X.; Wang, W.; et al. Temporal pattern coding in ionic memristor-based spiking neurons for adaptive tactile perception. Adv. Elect. Mater. 2022, 8, 2200334.
93. Zhu, J.; Zhang, X.; Wang, M.; et al. An artificial spiking nociceptor integrating pressure sensors and memristors. IEEE. Electron. Device. Lett. 2022, 43, 962-5.
94. Zhu, J.; Zhang, X.; Wang, R.; et al. A heterogeneously integrated spiking neuron array for multimode-fused perception and object classification. Adv. Mater. 2022, 34, e2200481.
95. Wu, Y.; Zhao, R.; Zhu, J.; et al. Brain-inspired global-local learning incorporated with neuromorphic computing. Nat. Commun. 2022, 13, 65.
96. Zhou, G.; Wang, Z.; Sun, B.; et al. Volatile and nonvolatile memristive devices for neuromorphic computing. Adv. Elect. Mater. 2022, 8, 2101127.
97. Chen, S.; Liu, T.; Jia, Y.; Li, J. Recent advances in bio-integrated electrochemical sensors for neuroengineering. Fundam. Res. 2025, 5, 29-47.
98. Roy, K.; Jaiswal, A.; Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 2019, 575, 607-17.
99. Yuan, R.; Tiw, P. J.; Cai, L.; et al. A neuromorphic physiological signal processing system based on VO2 memristor for next-generation human-machine interface. Nat. Commun. 2023, 14, 3695.
100. Wang, Z.; Joshi, S.; Savel’ev, S.; et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 2018, 1, 137-45.
101. Serb, A.; Bill, J.; Khiat, A.; Berdan, R.; Legenstein, R.; Prodromakis, T. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat. Commun. 2016, 7, 12611.
102. Fang, W.; Chen, Y.; Ding, J.; et al. SpikingJelly: an open-source machine learning infrastructure platform for spike-based intelligence. Sci. Adv. 2023, 9, eadi1480.
103. Yao, P.; Wu, H.; Gao, B.; et al. Fully hardware-implemented memristor convolutional neural network. Nature 2020, 577, 641-6.
104. Fu, Y.; Zhao, S.; Wang, L.; Zhu, R. A wearable sensor using structured silver-particle reinforced PDMS for radial arterial pulse wave monitoring. Adv. Healthc. Mater. 2019, 8, e1900633.
105. Li, Z.; Li, Z.; Tang, W.; et al. Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system. Nat. Commun. 2024, 15, 7275.
106. Li, G.; Liu, S.; Mao, Q.; Zhu, R. Multifunctional electronic skins enable robots to safely and dexterously interact with human. Adv. Sci. 2022, 9, e2104969.
107. Son, D.; Kang, J.; Vardoulis, O.; et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 2018, 13, 1057-65.
108. Sang, S.; Pei, Z.; Zhang, F.; et al. Three-dimensional printed bimodal electronic skin with high resolution and breathability for hair growth. ACS. Appl. Mater. Interfaces. 2022, 14, 31493-501.
109. Shi, W.; Lyu, Z.; Tang, S.; Chia, T.; Yang, C. A bionic hand controlled by hand gesture recognition based on surface EMG signals: a preliminary study. Biocybern. Biomed. Eng. 2018, 38, 126-35.
110. Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 2019, 52, 523-33.
111. Ji, Z.; Zhu, H.; Liu, H.; et al. The design and characterization of a flexible tactile sensing array for robot skin. Sensors 2016, 16, 2001.
112. Chen, S.; Zhou, Z.; Hou, K.; et al. Artificial organic afferent nerves enable closed-loop tactile feedback for intelligent robot. Nat. Commun. 2024, 15, 7056.
113. de Oliveira, T. E.; Cretu, A.; Petriu, E. M. Multimodal bio-inspired tactile sensing module. IEEE. Sensors. J. 2017, 17, 3231-43.
114. Zhang, C.; Ye, W. B.; Zhou, K.; et al. Bioinspired artificial sensory nerve based on nafion memristor. Adv. Funct. Mater. 2019, 29, 1808783.
115. Hui, X.; Tang, L.; Zhang, D.; et al. Acoustically enhanced triboelectric stethoscope for ultrasensitive cardiac sounds sensing and disease diagnosis. Adv. Mater. 2024, 36, e2401508.
116. Zhao, D.; Zhuo, J.; Chen, Z.; et al. Eco-friendly in-situ gap generation of no-spacer triboelectric nanogenerator for monitoring cardiovascular activities. Nano. Energy. 2021, 90, 106580.
117. Sun, Y.; Mao, J.; Cao, L.; et al. Intelligent cardiovascular disease diagnosis system combined piezoelectric nanogenerator based on 2D Bi2O2Se with deep learning technique. Nano. Energy. 2024, 128, 109878.
118. Chen, Z.; Xu, M.; Zhou, C.; et al. Phase transformation enabled textile triboelectric nanogenerators for wearable energy harvesting and personal thermoregulation. Nano. Energy. 2024, 132, 110361.
119. Sengupta, D.; Mastella, M.; Chicca, E.; Kottapalli, A. G. P. Skin-inspired flexible and stretchable electrospun carbon nanofiber sensors for neuromorphic sensing. ACS. Appl. Electron. Mater. 2022, 4, 308-15.
120. Sengupta, D.; Romano, J.; Kottapalli, A. G. P. Electrospun bundled carbon nanofibers for skin-inspired tactile sensing, proprioception and gesture tracking applications. npj. Flex. Electron. 2021, 5, 126.
121. Kim, S.; Lee, S.; Park, J. A skin-inspired, self-powered tactile sensor. Nano. Energy. 2022, 101, 107608.
122. Jiang, C.; Tan, D.; Sun, N.; et al. 60 nm Pixel-size pressure piezo-memory system as ultrahigh-resolution neuromorphic tactile sensor for in-chip computing. Nano. Energy. 2021, 87, 106190.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.