REFERENCES
1. Hou, G.; Zhang, X.; Du, F.; et al. Self-regulated underwater phototaxis of a photoresponsive hydrogel-based phototactic vehicle. Nat. Nanotechnol. 2024, 19, 77-84.
2. Li, G.; Chen, X.; Zhou, F.; et al. Self-powered soft robot in the Mariana Trench. Nature 2021, 591, 66-71.
3. Ren, L.; Li, B.; Wei, G.; et al. Biology and bioinspiration of soft robotics: actuation, sensing, and system integration. iScience 2021, 24, 103075.
4. Hassani F. Bioreceptor-inspired soft sensor arrays: recent progress towards advancing digital healthcare. Soft. Sci. 2023, 3, 31.
5. Kim, J. H.; Lee, S. E.; Kim, B. H. Applications of flexible and stretchable three-dimensional structures for soft electronics. Soft. Sci. 2023, 3, 16.
6. Zhu, H.; Xu, B.; Wang, Y.; Pan, X.; Qu, Z.; Mei, Y. Self-powered locomotion of a hydrogel water strider. Sci. Robot. 2021, 6, eabe7925.
7. Yang, X.; Chen, Y.; Zhang, X.; et al. Bioinspired light-fueled water-walking soft robots based on liquid crystal network actuators with polymerizable miniaturized gold nanorods. Nano. Today. 2022, 43, 101419.
8. Jiang, J.; Tan, Q.; Yu, X.; Wu, D.; Yao, L. Research progress of bionic water strider robot. MENG. 2022, 15, 122-48.
9. Yang, K.; Liu, G.; Yan, J.; Wang, T.; Zhang, X.; Zhao, J. A water-walking robot mimicking the jumping abilities of water striders. Bioinspir. Biomim. 2016, 11, 066002.
10. Koh, J. S.; Yang, E.; Jung, G. P.; et al. BIOMECHANICS. Jumping on water: surface tension-dominated jumping of water striders and robotic insects. Science 2015, 349, 517-21.
11. Shin, B.; Kim, H. Y.; Cho, K. J. Towards a biologically inspired small-scale water jumping robot. In 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, USA, Oct 19-22 2008; IEEE, 2008. pp 127-31.
12. Okawa, D.; Pastine, S. J.; Zettl, A.; Fréchet, J. M. Surface tension mediated conversion of light to work. J. Am. Chem. Soc. 2009, 131, 5396-8.
13. Wu, H.; Chen, Y.; Xu, W.; et al. High-performance Marangoni hydrogel rotors with asymmetric porosity and drag reduction profile. Nat. Commun. 2023, 14, 20.
14. Wang, X.; Dai, L.; Jiao, N.; Tung, S.; Liu, L. Superhydrophobic photothermal graphene composites and their functional applications in microrobots swimming at the air/water interface. Chem. Eng. J. 2021, 422, 129394.
16. Heng, W.; Solomon, S.; Gao, W. Flexible electronics and devices as human-machine interfaces for medical robotics. Adv. Mater. 2022, 34, e2107902.
17. Jin, J.; Wang, S.; Zhang, Z.; Mei, D.; Wang, Y. Progress on flexible tactile sensors in robotic applications on objects properties recognition, manipulation and human-machine interactions. Soft. Sci. 2023, 3, 8.
18. Iyer, V.; Gaensbauer, H.; Daniel, T. L.; Gollakota, S. Wind dispersal of battery-free wireless devices. Nature 2022, 603, 427-33.
19. Wehner, M.; Truby, R. L.; Fitzgerald, D. J.; et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 2016, 536, 451-5.
20. Jafferis, N. T.; Helbling, E. F.; Karpelson, M.; Wood, R. J. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature 2019, 570, 491-5.
21. Gao, A.; Butt, H. J.; Steffen, W.; Schönecker, C. Optical manipulation of liquids by thermal marangoni flow along the air-water interfaces of a superhydrophobic surface. Langmuir 2021, 37, 8677-86.
22. Wang, W.; Han, B.; Zhang, Y.; et al. Laser-induced graphene tapes as origami and stick-on labels for photothermal manipulation via marangoni effect. Adv. Funct. Mater. 2021, 31, 2006179.
23. Yong, J.; Chen, F.; Yang, Q.; et al. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays. Langmuir 2013, 29, 3274-9.
24. Whyman, G.; Bormashenko, E.; Stein, T. The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chem. Phys. Lett. 2008, 450, 355-9.
25. Yang, Y.; Bai, H.; Li, M.; et al. An interfacial floating tumbler with a penetrable structure and Janus wettability inspired by Pistia stratiotes. Mater. Horiz. 2022, 9, 1888-95.
26. Zhang, Z.; Yu, Y.; Yu, H.; Feng, Y.; Feng, W. Water-resistant conductive organogels with sensation and actuation functions for artificial neuro-sensory muscular systems. SmartMat 2022, 3, 632-43.
27. Chen, Y.; Zhang, Y.; Liang, Z.; Cao, Y.; Han, Z.; Feng, X. Flexible inorganic bioelectronics. npj. Flex. Electron. 2020, 4, 65.
28. Zhang, Z.; Zhang, F.; Jian, W.; Chen, Y.; Feng, X. Photothermal-responsive lightweight hydrogel actuator loaded with polydopamine-modified hollow glass microspheres. ACS. Appl. Mater. Interfaces. 2024, 16, 23914-23.
29. Lin, Y.; Siddall, R.; Schwab, F.; et al. Modeling and control of a soft robotic fish with integrated soft sensing. Adv. Intell. Syst. 2023, 5, 2000244.
30. Bang, J.; Choi, S. H.; Pyun, K. R.; et al. Bioinspired electronics for intelligent soft robots. Nat. Rev. Electr. Eng. 2024, 1, 597-613.
31. Qu, J.; Cui, G.; Li, Z.; et al. Advanced flexible sensing technologies for soft robots. Adv. Funct. Mater. 2024, 34, 2401311.
32. Bowden, N.; Terfort, A.; Carbeck, J.; Whitesides, G. M. Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 1997, 276, 233-5.