REFERENCES

1. Jiang, Z.; Lee, Y. S.; Wang, Y.; John, H.; Fang, L.; Tang, Y. Advancements in flexible sensors for monitoring body movements during sleep: a review. Sensors 2024, 24, 5091.

2. Yuxin, P.; Li, S.; Xia, Z.; et al. Recent advances in flexible bending sensors and their applications. Int. J. Smart. Nano. Mat. 2024, 15, 697-729.

3. Sun, G.; Wang, P.; Jiang, Y.; Sun, H.; Meng, C.; Guo, S. Recent advances in flexible and soft gel-based pressure sensors. Soft. Sci. 2022, 2, 17.

4. Liu, Y.; Wang, H.; Zhao, W.; Zhang, M.; Qin, H.; Xie, Y. Flexible, stretchable sensors for wearable health monitoring: sensing mechanisms, materials, fabrication strategies and features. Sensors 2018, 18, 645.

5. Qi, J.; Yang, P.; Waraich, A.; Deng, Z.; Zhao, Y.; Yang, Y. Examining sensor-based physical activity recognition and monitoring for healthcare using Internet of Things: a systematic review. J. Biomed. Inform. 2018, 87, 138-53.

6. Yang, Y.; Cui, T.; Li, D.; et al. Breathable electronic skins for daily physiological signal monitoring. Nanomicro. Lett. 2022, 14, 161.

7. Yuan, Z.; Han, S.; Gao, W.; Pan, C. Flexible and stretchable strategies for electronic skins: materials, structure, and integration. ACS. Appl. Electron. Mater. 2022, 4, 1-26.

8. Zhang, L.; He, J.; Liao, Y.; et al. A self-protective, reproducible textile sensor with high performance towards human–machine interactions. J. Mater. Chem. A. 2019, 7, 26631-40.

9. Cao, M.; Su, J.; Fan, S.; Qiu, H.; Su, D.; Li, L. Wearable piezoresistive pressure sensors based on 3D graphene. Chem. Eng. J. 2021, 406, 126777.

10. Wang, H.; Li, Z.; Liu, Z.; et al. Flexible capacitive pressure sensors for wearable electronics. J. Mater. Chem. C. 2022, 10, 1594-605.

11. Guo, X.; Li, Y.; Hong, W.; et al. Bamboo-inspired, environmental friendly PDMS/plant fiber composites-based capacitive flexible pressure sensors by origami for human–machine interaction. ACS. Sustain. Chem. Eng. 2024, 12, 4835-45.

12. Tajitsu, Y. Piezoelectret sensor made from an electro-spun fluoropolymer and its use in a wristband for detecting heart-beat signals. IEEE. Trans. Dielect. Electr. Insul. 2015, 22, 1355-9.

13. Li, H.; Wu, K.; Xu, Z.; Wang, Z.; Meng, Y.; Li, L. Ultrahigh-sensitivity piezoresistive pressure sensors for detection of tiny pressure. ACS. Appl. Mater. Interfaces. 2018, 10, 20826-34.

14. Yang, J. C.; Kim, J. O.; Oh, J.; et al. Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature. ACS. Appl. Mater. Interfaces. 2019, 11, 19472-80.

15. Park, J.; Lee, Y.; Hong, J.; et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS. Nano. 2014, 8, 4689-97.

16. Tao, L. Q.; Zhang, K. N.; Tian, H.; et al. Graphene-paper pressure sensor for detecting human motions. ACS. Nano. 2017, 11, 8790-5.

17. Wang, K.; He, Z.; Yu, Y. Preparation and performance optimization of flexible piezoresistive pressure senor. Electron. Comp. Mater. 2022, 41, 781.

18. Wang, P.; Liu, J.; Li, Y.; et al. Recent advances in wearable tactile sensors based on electrospun nanofiber platform. Adv. Sens. Res. 2023, 2, 2200047.

19. Wang, P.; Yu, W.; Li, G.; Meng, C.; Guo, S. Printable, flexible, breathable and sweatproof bifunctional sensors based on an all-nanofiber platform for fully decoupled pressure–temperature sensing application. Chem. Eng. J. 2023, 452, 139174.

20. Sun, G.; Wang, P.; Meng, C. Flexible and breathable iontronic tactile sensor with personal thermal management ability for a comfortable skin-attached sensing application. Nano. Energy. 2023, 118, 109006.

21. Qin, R.; Nong, J.; Wang, K.; et al. Recent advances in flexible pressure sensors based on MXene materials. Adv. Mater. 2024, 36, e2312761.

22. Shu, J.; Gao, L.; Li, Y.; et al. MXene/tissue paper composites for wearable pressure sensors and thermotherapy electronics. Thin. Solid. Films. 2022, 743, 139054.

23. Chang, K.; Guo, M.; Pu, L.; et al. Wearable nanofibrous tactile sensors with fast response and wireless communication. Chem. Eng. J. 2023, 451, 138578.

24. Shi, J.; Wang, L.; Dai, Z.; et al. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 2018, 14, e1800819.

25. Wang, S.; Du, X.; Luo, Y.; et al. Hierarchical design of waterproof, highly sensitive, and wearable sensing electronics based on MXene-reinforced durable cotton fabrics. Chem. Eng. J. 2021, 408, 127363.

26. Adepu, V.; Tathacharya, M.; Cs, R.; Mattela, V.; Sahatiya, P. TeNWs/Ti3C2Tx nanohybrid-based flexible pressure sensors for personal safety applications using morse code. ACS. Appl. Nano. Mater. 2022, 5, 18209-19.

27. Chen, Z.; Hu, Y.; Zhuo, H.; et al. Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 2019, 31, 3301-12.

28. Guo, Y.; Zhong, M.; Fang, Z.; Wan, P.; Yu, G. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano. Lett. 2019, 19, 1143-50.

29. Li, T.; Chen, L.; Yang, X.; et al. A flexible pressure sensor based on an MXene–textile network structure. J. Mater. Chem. C. 2019, 7, 1022-7.

30. Liu, R.; Li, J.; Li, M.; et al. MXene-coated air-permeable pressure-sensing fabric for smart wear. ACS. Appl. Mater. Interfaces. 2020, 12, 46446-54.

31. Lu, Y.; Qu, X.; Zhao, W.; et al. Highly stretchable, elastic, and sensitive MXene-based hydrogel for flexible strain and pressure sensors. Research 2020, 2020, 2038560.

32. Zheng, Y.; Yin, R.; Zhao, Y.; et al. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem. Eng. J. 2021, 420, 127720.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/