REFERENCES
2. Zhu, H.; Liang, H.; Xiao, F.; Wang, G.; Hussain, R. Pressure image recognition of lying positions based on multi-feature value regularized extreme learning algorithm. Appl. Math. Nonlinear. Sci. 2023, 8, 559-72.
3. Lee, J.; Hong, M.; Ryu, S. Sleep monitoring system using kinect sensor. Int. J. Distrib. Sens. Netw. 2015, 2015, 1-9.
4. He, P.; Brent, J. R.; Ding, H.; et al. Fully printed high performance humidity sensors based on two-dimensional materials. Nanoscale 2018, 10, 5599-606.
5. Amjadi, M.; Kyung, K.; Park, I.; Sitti, M. Stretchable, skin‐mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 2016, 26, 1678-98.
6. Obitayo, W.; Liu, T. A review: carbon nanotube-based piezoresistive strain sensors. J. Sens. 2012, 2012, 1-15.
7. Zhou, Z.; Chen, N.; Zhong, H.; et al. Textile-based mechanical sensors: a review. Materials 2021, 14, 6073.
8. Lv, G.; Wang, H.; Tong, Y.; et al. Flexible, conformable organic semiconductor proximity sensor array for electronic skin. Adv. Mater. Interfaces. 2020, 7, 2000306.
9. Wei, P.; Yang, X.; Cao, Z.; et al. Flexible and stretchable electronic skin with high durability and shock resistance via embedded 3D printing technology for human activity monitoring and personal healthcare. Adv. Mater. Technol. 2019, 4, 1900315.
10. Zhu, P.; Li, Z.; Pang, J.; He, P.; Zhang, S. Latest developments and trends in electronic skin devices. Soft. Sci. 2024, 4, 17.
11. Miao, Y.; Xu, M.; Yu, J.; Zhang, L. Conductive cold-resistant and elastic hydrogel: a potential bionic skin for human-machine interaction control over artificial limbs. Sens. Actuators. B. Chem. 2021, 327, 128916.
12. Wang, M.; Yan, Z.; Wang, T.; et al. Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 2020, 3, 563-70.
13. Hu, M.; He, P.; Zhao, W.; et al. Machine learning-enabled intelligent gesture recognition and communication system using printed strain sensors. ACS. Appl. Mater. Interfaces. 2023, Online ahead of print.
14. Huang, J.; Guo, Y.; Jiang, Y.; Wang, F.; Pan, L.; Shi, Y. Recent advances and future prospects in tactile sensors for normal and shear force detection, decoupling, and applications. J. Semicond. 2024, 45, 121601.
15. Clevenger, M.; Kim, H.; Song, H. W.; No, K.; Lee, S. Binder-free printed PEDOT wearable sensors on everyday fabrics using oxidative chemical vapor deposition. Sci. Adv. 2021, 7, eabj8958.
16. He, J.; Xiao, P.; Lu, W.; et al. A universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor. Nano. Energy. 2019, 59, 422-33.
17. Yang, H.; Xiao, X.; Li, Z.; et al. Wireless Ti3C2Tx MXene strain sensor with ultrahigh sensitivity and designated working windows for soft exoskeletons. ACS. Nano. 2020, 14, 11860-75.
18. Xu, X.; Li, Z.; Hu, M.; et al. High sensitivity and antifreeze silver nanowire/eutectic gel strain sensor for human motion and healthcare monitoring. IEEE. Sensors. J. 2024, 24, 5928-35.
19. Jung, H. H.; Lee, H.; Yea, J.; Jang, K. Wearable electrochemical sensors for real-time monitoring in diabetes mellitus and associated complications. Soft. Sci. 2024, 4, 15.
20. Choi, S.; Han, S. I.; Kim, D.; Hyeon, T.; Kim, D. H. High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem. Soc. Rev. 2019, 48, 1566-95.
21. Guo, D.; Pan, X.; He, H. Effects of temperature on MWCNTs/PDMS composites based flexible strain sensors. J. Cent. South. Univ. 2020, 27, 3202-12.
22. Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666-86.
23. Zheng, Q.; Lee, J.; Shen, X.; Chen, X.; Kim, J. Graphene-based wearable piezoresistive physical sensors. Mater. Today. 2020, 36, 158-79.
24. He, P.; Derby, B. Inkjet printing ultra-large graphene oxide flakes. 2D. Mater. 2017, 4, 021021.
25. Wu, L.; Li, Y.; Chen, J.; Zhang, R.; Zhang, Q.; Xiao, Y. Rare earth modified reduced graphene oxide reinforced AgCuTi composite brazing filler for brazing C/C composites. J. Cent. South. Univ. 2024, 31, 1398-411.
26. Li, X.; Cai, W.; An, J.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-4.
27. Deng, C.; Gao, P.; Lan, L.; et al. Ultrasensitive and highly stretchable multifunctional strain sensors with timbre-recognition ability based on vertical graphene. Adv. Funct. Mater. 2019, 29, 1907151.
28. Huang, K.; Dong, S.; Yang, J.; et al. Three-dimensional printing of a tunable graphene-based elastomer for strain sensors with ultrahigh sensitivity. Carbon 2019, 143, 63-72.
29. Wang, R.; Jiang, N.; Su, J.; et al. A Bi-Sheath fiber sensor for giant tensile and torsional displacements. Adv. Funct. Materials. 2017, 27, 1702134.
30. Zeng, X.; Hu, M.; He, P.; et al. Highly conductive carbon-based E-textile for gesture recognition. IEEE. Electron. Device. Lett. 2023, 44, 825-8.
32. Seyedin, S.; Zhang, P.; Naebe, M.; et al. Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater. Horiz. 2019, 6, 219-49.
33. Huang, T.; He, P.; Wang, R.; et al. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors. Adv. Funct. Mater. 2019, 29, 1903732.
34. Tian, X.; Chan, K.; Hua, T.; Niu, B.; Chen, S. Wearable strain sensors enabled by integrating one-dimensional polydopamine-enhanced graphene/polyurethane sensing fibers into textile structures. J. Mater. Sci. 2020, 55, 17266-83.
35. Heo, J. S.; Shishavan, H. H.; Soleymanpour, R.; Kim, J.; Kim, I. Textile-based stretchable and flexible glove sensor for monitoring upper extremity prosthesis functions. IEEE. Sensors. J. 2020, 20, 1754-60.
36. Zhu, H.; Gao, H.; Zhao, H.; et al. Printable elastic silver nanowire-based conductor for washable electronic textiles. Nano. Res. 2020, 13, 2879-84.
37. Luo, C.; Tian, B.; Liu, Q.; Feng, Y.; Wu, W. One-step-printed, highly sensitive, textile-based, tunable performance strain sensors for human motion detection. Adv. Mater. Technol. 2020, 5, 1900925.
38. Shi, X.; Wang, H.; Xie, X.; et al. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS. Nano. 2019, 13, 649-59.
39. Tseghai, G. B.; Malengier, B.; Fante, K. A.; Nigusse, A. B.; Van, L. L. Development of a flex and stretchy conductive cotton fabric via flat screen printing of PEDOT:PSS/PDMS conductive polymer composite. Sensors 2020, 20, 1742.
40. He, Z.; Zhou, G.; Byun, J. H.; et al. Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale 2019, 11, 5884-90.
41. Yang, K.; Yin, F.; Xia, D.; Peng, H.; Yang, J.; Yuan, W. A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale 2019, 11, 9949-57.