1. Seminara, L.; Gastaldo, P.; Watt, S. J.; Valyear, K. F.; Zuher, F.; Mastrogiovanni, F. Active haptic perception in robots: a review. Front. Neurorobot. 2019, 13, 53.
2. Nemah, M. N.; Low, C. Y.; Aldulaymi, O. H.; Ong, P.; Ismail, A. E.; Qasim, A. A. A review of non-invasive haptic feedback stimulation techniques for upper extremity prostheses. IJIE. 2019, 11, 299-326.
3. Lim, S.; Son, D.; Kim, J.; et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv. Funct. Mater. 2015, 25, 375-83.
4. Flesher; SN; Downey, J. E.; Weiss, J. M.; et al. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 2021, 372, 831-6.
5. Santhanam, G.; Ryu, S. I.; Yu, B. M.; Afshar, A.; Shenoy, K. V. A high-performance brain-computer interface. Nature 2006, 442, 195-8.
6. Chen, S.; Chen, Y.; Yang, J.; Han, T.; Yao, S. Skin-integrated stretchable actuators toward skin-compatible haptic feedback and closed-loop human-machine interactions. npj. Flex. Electron. 2023, 7, 235.
7. Chen, S.; Yu, L.; Shen, W.; et al. Multimodal 5-DOF stretchable electromagnetic actuators toward haptic information delivery. Adv. Funct. Mater. 2024, 34, 2314515.
8. Brookhuis, R.; Lammerink, T.; Wiegerink, R.; de, B. M.; Elwenspoek, M. 3D force sensor for biomechanical applications. Sens. Actuators. A. Phys. 2012, 182, 28-33.
9. Xu, H.; Chai, G.; Zhang, N.; Gu, G. Restoring finger-specific tactile sensations with a sensory soft neuroprosthetic hand through electrotactile stimulation. Soft. Sci. 2022, 2, 19.
10. Xu, Y.; Yu, S.; Liu, L.; et al. In-Sensor touch analysis for intent recognition. Adv. Funct. Mater. 2024, 34, 2411331.
11. Huang, Z.; Yu, S.; Xu, Y.; et al. In-sensor tactile fusion and logic for accurate intention recognition. Adv. Mater. 2024, 36, e2407329.
12. Chen, Z.; Lin, W.; Zhang, C.; et al. Multifunctional and reconfigurable electronic fabrics assisted by artificial intelligence for human augmentation. Adv. Fiber. Mater. 2024, 6, 229-42.
13. Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458-63.
14. Choi, G.; Jang, H.; Oh, S.; et al. A highly sensitive and stress-direction-recognizing asterisk-shaped carbon nanotube strain sensor. J. Mater. Chem. C. 2019, 7, 9504-12.
15. Shi, M.; Zhang, J.; Chen, H.; et al. Self-powered analogue smart skin. ACS. Nano. 2016, 10, 4083-91.
16. Ham, J.; Huh, T. M.; Kim, J.; et al. Porous dielectric elastomer based flexible multiaxial tactile sensor for dexterous robotic or prosthetic hands. Adv. Mater. Technol. 2023, 8, 2200903.
17. Johansson, R. S.; Flanagan, J. R. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 2009, 10, 345-59.
18. Sun, K.; Ko, H.; Park, H. H.; et al. Hybrid architectures of heterogeneous carbon nanotube composite microstructures enable multiaxial strain perception with high sensitivity and ultrabroad sensing range. Small 2018, 14, e1803411.
19. Chen, S.; Bai, C.; Zhang, C.; et al. Flexible piezoresistive three-dimensional force sensor based on interlocked structures. Sens. Actuators. A. Phys. 2021, 330, 112857.
20. Kwon, S.; Kim, S.; Kim, I.; Hong, Y. K.; Na, S. Direct 3D printing of graphene nanoplatelet/silver nanoparticle-based nanocomposites for multiaxial piezoresistive sensor applications. Adv. Mater. Technol. 2019, 4, 1800500.
21. Tibrewala, A.; Hofmann, N.; Phataralaoha, A.; Jäger, G.; Büttgenbach, S. Development of 3D force sensors for nanopositioning and nanomeasuring machine. Sensors 2009, 9, 3228-39.
22. Ting, Y.; Suprapto; Nugraha, A.; Chiu, C.; Gunawan, H. Design and characterization of one-layer PVDF thin film for a 3D force sensor. Sens. Actuators. A. Phys. 2016, 250, 129-37.
23. Zhu, Y.; Jiang, S.; Xiao, Y.; Yu, J.; Sun, L.; Zhang, W. A flexible three-dimensional force sensor based on PI piezoresistive film. J. Mater. Sci. Mater. Electron. 2018, 29, 19830-9.
24. Jones, D.; Wang, H.; Alazmani, A.; et al. A soft multi-axial force sensor to assess tissue properties in realtime. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, September 24-28, 2017; Publisher: IEEE; pp 5738-43.
25. Nakashima, R.; Takahashi, H. Multi-axial tactile sensor using standing lig cantilevers on polyimide film. In 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), Tokyo, Japan, January 9-13, 2022; Publisher: IEEE; pp 688-90.
26. Kim, K.; Ahn, J.; Jeong, Y.; Choi, J.; Gul, O.; Park, I. All-soft multiaxial force sensor based on liquid metal for electronic skin. Micro. Nano. Syst. Lett. 2021, 9, 126.
27. Kim, K.; Park, J.; Suh, J.; Kim, M.; Jeong, Y.; Park, I. 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments. Sens. Actuators. A. Phys. 2017, 263, 493-500.
28. Wu, J.; Pancham, P. P.; Hsu, T.; et al. Capacitive tactile sensor with stacked structure and hybrid fabrication for multiaxial force decoupling. In 2022 IEEE Sensors, Dallas, USA, October 30-November 2, 2022; Publisher: IEEE; pp 1-3.
29. Zheng, H.; Jin, Y.; Wang, H.; Zhao, P. DotView: A low-cost compact tactile sensor for pressure, shear, and torsion estimation. IEEE. Robot. Autom. Lett. 2023, 8, 880-7.
30. Aksoy, B.; Digumarti, K. M.; Shea, H. Soft monolithic shielded sensors to measure shear and normal forces for local slip detection. Adv. Mater. Technol. 2024, 9, 2400486.
31. Hu, H.; Zhang, C.; Pan, C.; et al. Wireless flexible magnetic tactile sensor with super-resolution in large-areas. ACS. Nano. 2022, 16, 19271-80.
32. Yan, Y.; Hu, Z.; Yang, Z.; et al. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci. Robot. 2021, 6, eabc8801.
33. Wang, H.; Jones, D.; de, B. G.; et al. Design and characterization of tri-axis soft inductive tactile sensors. IEEE. Sensors. J. 2018, 18, 7793-801.
34. Yao, S.; Ren, P.; Song, R.; et al. Nanomaterial-enabled flexible and stretchable sensing systems: processing, integration, and applications. Adv. Mater. 2020, 32, e1902343.
37. Wang, L.; Jones, D.; Chapman, G. J.; et al. An inductive force sensor for in-shoe plantar normal and shear load measurement. IEEE. Sensors. J. 2020, 20, 13318-31.
38. Wang, C.; Wang, T.; Liu, B.; Tian, F.; Lu, X. Metal thickness measurement system based on a double-coil eddy-current method with characteristic ratio detection. IEEE. Trans. Ind. Electron. 2023, 70, 12904-12.
39. Chen, X.; Ding, T. Flexible eddy current sensor array for proximity sensing. Sens. Actuators. A. Phys. 2007, 135, 126-30.
40. Kawasetsu, T.; Niiyama, R.; Kuniyoshi, Y. Flexible and soft inductive tri-axis tactile sensor using liquid metal as sensing target. In 2019 IEEE SENSORS, Montreal, Canada, October 27-30, 2019; Publisher: IEEE; pp 1-4.
41. Dong, P.; Song, Y.; Yu, S.; et al. Electromyogram-based lip-reading via unobtrusive dry electrodes and machine learning methods. Small 2023, 19, e2205058.
42. Liu, J. M. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 1982, 7, 196-8.
43. Yao, S.; Zhou, W.; Hinson, R.; et al. Ultrasoft porous 3D conductive dry electrodes for electrophysiological sensing and myoelectric control. Adv. Mater. Technol. 2022, 7, 2101637.
44. Kim, J. O.; Kwon, S. Y.; Kim, Y.; et al. Highly ordered 3D microstructure-based electronic skin capable of differentiating pressure, temperature, and proximity. ACS. Appl. Mater. Interfaces. 2019, 11, 1503-11.
45. Wang, H.; Kow, J.; Raske, N.; et al. Robust and high-performance soft inductive tactile sensors based on the Eddy-current effect. Sens. Actuators. A. Phys. 2018, 271, 44-52.
46. Wang, H.; Liu, Y.; Li, W.; et al. Design of ultrastable and high resolution eddy-current displacement sensor system. In IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, USA, October 29-November 1, 2014; Publisher: IEEE; pp 2333-39.
47. Liyuan, Y.; Shushu, L.; Pingjuan, N.; Hao, S.; Run, M.; Zheng, C. Novel square spiral Coil for achieving uniform Distribution of magnetic field. IOP. Conf. Ser. Earth. Environ. Sci. 2019, 332, 042005.
48. Peters, C.; Manoli, Y. Inductance calculation of planar multi-layer and multi-wire coils: an analytical approach. Sens. Actuators. A. Phys. 2008, 145-146, 394-404.
50. Wang, H.; Totaro, M.; Veerapandian, S.; et al. Folding and bending planar coils for highly precise soft angle sensing. Adv. Mater. Technol. 2020, 5, 2000659.
51. Kawasetsu, T.; Horii, T.; Ishihara, H.; Asada, M. Flexible tri-axis tactile sensor using spiral inductor and magnetorheological elastomer. IEEE. Sensors. J. 2018, 18, 5834-41.
53. Yao, S.; Yang, J.; Poblete, F. R.; Hu, X.; Zhu, Y. Multifunctional electronic textiles using silver nanowire composites. ACS. Appl. Mater. Interfaces. 2019, 11, 31028-37.
55. Yeh, S.; Fang, W. Inductive micro tri-axial tactile sensor using a CMOS chip with a coil array. IEEE. Electron. Device. Lett. 2019, 40, 620-3.
56. Wattanasarn, S.; Noda, K.; Matsumoto, K.; et al. 3D flexible tactile sensor using electromagnetic induction coils. In 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France, January 29-February 2, 2012; Publisher: IEEE; pp 488-91.
57. Du, L.; Zhu, X.; Zhe, J. An inductive sensor for real-time measurement of plantar normal and shear forces distribution. IEEE. Trans. Biomed. Eng. 2015, 62, 1316-23.
58. Hamaguchi, S.; Kawasetsu, T.; Horii, T.; et al. Soft inductive tactile sensor using flow-channel enclosing liquid metal. IEEE. Robot. Autom. Lett. 2020, 5, 4028-34.
59. Casanova, J. J.; Low, Z. N.; Lin, J.; et al. Transmitting coil achieving uniform magnetic field distribution for planar wireless power transfer system. In 2009 IEEE Radio and Wireless Symposium, San Diego, USA, January 18-22, 2009; Publisher: IEEE; pp 530-3.
60. Xu, Q.; Hu, Q.; Wang, H.; Mao, Z.; Sun, M. Optimal design of planar spiral coil for uniform magnetic field to wirelessly power position-free targets. IEEE. Trans. Magn. 2021, 57, 1-9.
61. Li, S.; Niu, P.; Yu, L.; et al. Design method of primary transmitting coil for realizing large uniform magnetic field distribution. In 2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Huhhot, China, September 14-16, 2018; Publisher: IEEE; pp 112-6.
62. Diao, Y.; Shen, Y.; Gao, Y. Design of coil structure achieving uniform magnetic field distribution for wireless charging platform. In 2011 4th International Conference on Power Electronics Systems and Applications, Hong Kong, China, June 8-10, 2011; Publisher: IEEE; pp 1-5.
63. Gefen, A.; Ousey, K. COVID-19: pressure ulcers, pain and the cytokine storm. J. Wound. Care. 2020, 29, 540-2.
65. Gu, M.; Zhao, B.; Gao, J.; et al. Nested-cell architecture and molecular surface modification enabled 10 megapascals range high sensitivity flexible pressure sensors for application in extreme environment. Adv. Funct. Mater. 2024, 34, 2400494.
66. Yao, S.; Zhu, Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 2014, 6, 2345-52.
67. Arazpour, M.; Bani, M. A.; Hutchins, S. W. Reciprocal gait orthoses and powered gait orthoses for walking by spinal cord injury patients. Prosthet. Orthot. Int. 2013, 37, 14-21.
68. Lourenco, L.; Blanes, L.; Salomé, G. M.; Ferreira, L. M. Quality of life and self-esteem in patients with paraplegia and pressure ulcers: a controlled cross-sectional study. J. Wound. Care. 2014, 23, 331-4,336.
69. Lyder C.; E., A. Pressure Ulcers: A Patient Safety Issue. In Patient Safety and Quality: An Evidence-Based Handbook for Nurses; Hughes R.G., Eds.; Vol. 3; Rockville (MD): Agency for Healthcare Research and Quality (US); 2008, Chapter 12.
70. Devanand, D. B.; Kedgley, A. E. Objective methods of monitoring usage of orthotic devices for the extremities: a systematic review. Sensors 2023, 23, 7420.
71. Cheng, A. J.; Wu, L.; Sha, Z.; et al. Recent advances of capacitive sensors: materials, microstructure designs, applications, and opportunities. Adv. Mater. Technol. 2023, 8, 2201959.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.