REFERENCES
1. Seminara, L.; Gastaldo, P.; Watt, S. J.; Valyear, K. F.; Zuher, F.; Mastrogiovanni, F. Active haptic perception in robots: a review. Front. Neurorobot. 2019, 13, 53.
2. Nemah, M. N.; Low, C. Y.; Aldulaymi, O. H.; Ong, P.; Ismail, A. E.; Qasim, A. A. A review of non-invasive haptic feedback stimulation techniques for upper extremity prostheses. IJIE. 2019, 11, 299-326.
3. Lim, S.; Son, D.; Kim, J.; et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv. Funct. Mater. 2015, 25, 375-83.
4. Flesher; SN; Downey, J. E.; Weiss, J. M.; et al. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 2021, 372, 831-6.
5. Santhanam, G.; Ryu, S. I.; Yu, B. M.; Afshar, A.; Shenoy, K. V. A high-performance brain-computer interface. Nature 2006, 442, 195-8.
6. Chen, S.; Chen, Y.; Yang, J.; Han, T.; Yao, S. Skin-integrated stretchable actuators toward skin-compatible haptic feedback and closed-loop human-machine interactions. npj. Flex. Electron. 2023, 7, 235.
7. Chen, S.; Yu, L.; Shen, W.; et al. Multimodal 5-DOF stretchable electromagnetic actuators toward haptic information delivery. Adv. Funct. Mater. 2024, 34, 2314515.
8. Brookhuis, R.; Lammerink, T.; Wiegerink, R.; de, B. M.; Elwenspoek, M. 3D force sensor for biomechanical applications. Sens. Actuators. A. Phys. 2012, 182, 28-33.
9. Xu, H.; Chai, G.; Zhang, N.; Gu, G. Restoring finger-specific tactile sensations with a sensory soft neuroprosthetic hand through electrotactile stimulation. Soft. Sci. 2022, 2, 19.
10. Xu, Y.; Yu, S.; Liu, L.; et al. In-Sensor touch analysis for intent recognition. Adv. Funct. Mater. 2024, 34, 2411331.
11. Huang, Z.; Yu, S.; Xu, Y.; et al. In-sensor tactile fusion and logic for accurate intention recognition. Adv. Mater. 2024, 36, e2407329.
12. Chen, Z.; Lin, W.; Zhang, C.; et al. Multifunctional and reconfigurable electronic fabrics assisted by artificial intelligence for human augmentation. Adv. Fiber. Mater. 2024, 6, 229-42.
13. Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458-63.
14. Choi, G.; Jang, H.; Oh, S.; et al. A highly sensitive and stress-direction-recognizing asterisk-shaped carbon nanotube strain sensor. J. Mater. Chem. C. 2019, 7, 9504-12.
15. Shi, M.; Zhang, J.; Chen, H.; et al. Self-powered analogue smart skin. ACS. Nano. 2016, 10, 4083-91.
16. Ham, J.; Huh, T. M.; Kim, J.; et al. Porous dielectric elastomer based flexible multiaxial tactile sensor for dexterous robotic or prosthetic hands. Adv. Mater. Technol. 2023, 8, 2200903.
17. Johansson, R. S.; Flanagan, J. R. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 2009, 10, 345-59.
18. Sun, K.; Ko, H.; Park, H. H.; et al. Hybrid architectures of heterogeneous carbon nanotube composite microstructures enable multiaxial strain perception with high sensitivity and ultrabroad sensing range. Small 2018, 14, e1803411.
19. Chen, S.; Bai, C.; Zhang, C.; et al. Flexible piezoresistive three-dimensional force sensor based on interlocked structures. Sens. Actuators. A. Phys. 2021, 330, 112857.
20. Kwon, S.; Kim, S.; Kim, I.; Hong, Y. K.; Na, S. Direct 3D printing of graphene nanoplatelet/silver nanoparticle-based nanocomposites for multiaxial piezoresistive sensor applications. Adv. Mater. Technol. 2019, 4, 1800500.
21. Tibrewala, A.; Hofmann, N.; Phataralaoha, A.; Jäger, G.; Büttgenbach, S. Development of 3D force sensors for nanopositioning and nanomeasuring machine. Sensors 2009, 9, 3228-39.
22. Ting, Y.; Suprapto; Nugraha, A.; Chiu, C.; Gunawan, H. Design and characterization of one-layer PVDF thin film for a 3D force sensor. Sens. Actuators. A. Phys. 2016, 250, 129-37.
23. Zhu, Y.; Jiang, S.; Xiao, Y.; Yu, J.; Sun, L.; Zhang, W. A flexible three-dimensional force sensor based on PI piezoresistive film. J. Mater. Sci. Mater. Electron. 2018, 29, 19830-9.
24. Jones, D.; Wang, H.; Alazmani, A.; et al. A soft multi-axial force sensor to assess tissue properties in realtime. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, September 24-28, 2017; Publisher: IEEE; pp 5738-43.
25. Nakashima, R.; Takahashi, H. Multi-axial tactile sensor using standing lig cantilevers on polyimide film. In 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), Tokyo, Japan, January 9-13, 2022; Publisher: IEEE; pp 688-90.
26. Kim, K.; Ahn, J.; Jeong, Y.; Choi, J.; Gul, O.; Park, I. All-soft multiaxial force sensor based on liquid metal for electronic skin. Micro. Nano. Syst. Lett. 2021, 9, 126.
27. Kim, K.; Park, J.; Suh, J.; Kim, M.; Jeong, Y.; Park, I. 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments. Sens. Actuators. A. Phys. 2017, 263, 493-500.
28. Wu, J.; Pancham, P. P.; Hsu, T.; et al. Capacitive tactile sensor with stacked structure and hybrid fabrication for multiaxial force decoupling. In 2022 IEEE Sensors, Dallas, USA, October 30-November 2, 2022; Publisher: IEEE; pp 1-3.
29. Zheng, H.; Jin, Y.; Wang, H.; Zhao, P. DotView: A low-cost compact tactile sensor for pressure, shear, and torsion estimation. IEEE. Robot. Autom. Lett. 2023, 8, 880-7.
30. Aksoy, B.; Digumarti, K. M.; Shea, H. Soft monolithic shielded sensors to measure shear and normal forces for local slip detection. Adv. Mater. Technol. 2024, 9, 2400486.
31. Hu, H.; Zhang, C.; Pan, C.; et al. Wireless flexible magnetic tactile sensor with super-resolution in large-areas. ACS. Nano. 2022, 16, 19271-80.
32. Yan, Y.; Hu, Z.; Yang, Z.; et al. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci. Robot. 2021, 6, eabc8801.
33. Wang, H.; Jones, D.; de, B. G.; et al. Design and characterization of tri-axis soft inductive tactile sensors. IEEE. Sensors. J. 2018, 18, 7793-801.
34. Yao, S.; Ren, P.; Song, R.; et al. Nanomaterial-enabled flexible and stretchable sensing systems: processing, integration, and applications. Adv. Mater. 2020, 32, e1902343.
35. ATI Industrial Automation. Measure all six components of force and torque in a compact, rugged transducer. Available from: https://www.ati-ia.com/Products/ft/sensors.aspx. [Last accessed on 10 Jan 2025].
36. FUTEK Advanced Sensor Technology. Multi-axis sensors. Available from: https://www.futek.com/store/multi-axis-sensors. [Last accessed on 10 Jan 2025].
37. Wang, L.; Jones, D.; Chapman, G. J.; et al. An inductive force sensor for in-shoe plantar normal and shear load measurement. IEEE. Sensors. J. 2020, 20, 13318-31.
38. Wang, C.; Wang, T.; Liu, B.; Tian, F.; Lu, X. Metal thickness measurement system based on a double-coil eddy-current method with characteristic ratio detection. IEEE. Trans. Ind. Electron. 2023, 70, 12904-12.
39. Chen, X.; Ding, T. Flexible eddy current sensor array for proximity sensing. Sens. Actuators. A. Phys. 2007, 135, 126-30.
40. Kawasetsu, T.; Niiyama, R.; Kuniyoshi, Y. Flexible and soft inductive tri-axis tactile sensor using liquid metal as sensing target. In 2019 IEEE SENSORS, Montreal, Canada, October 27-30, 2019; Publisher: IEEE; pp 1-4.
41. Dong, P.; Song, Y.; Yu, S.; et al. Electromyogram-based lip-reading via unobtrusive dry electrodes and machine learning methods. Small 2023, 19, e2205058.
42. Liu, J. M. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 1982, 7, 196-8.
43. Yao, S.; Zhou, W.; Hinson, R.; et al. Ultrasoft porous 3D conductive dry electrodes for electrophysiological sensing and myoelectric control. Adv. Mater. Technol. 2022, 7, 2101637.
44. Kim, J. O.; Kwon, S. Y.; Kim, Y.; et al. Highly ordered 3D microstructure-based electronic skin capable of differentiating pressure, temperature, and proximity. ACS. Appl. Mater. Interfaces. 2019, 11, 1503-11.
45. Wang, H.; Kow, J.; Raske, N.; et al. Robust and high-performance soft inductive tactile sensors based on the Eddy-current effect. Sens. Actuators. A. Phys. 2018, 271, 44-52.
46. Wang, H.; Liu, Y.; Li, W.; et al. Design of ultrastable and high resolution eddy-current displacement sensor system. In IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, USA, October 29-November 1, 2014; Publisher: IEEE; pp 2333-39.
47. Liyuan, Y.; Shushu, L.; Pingjuan, N.; Hao, S.; Run, M.; Zheng, C. Novel square spiral Coil for achieving uniform Distribution of magnetic field. IOP. Conf. Ser. Earth. Environ. Sci. 2019, 332, 042005.
48. Peters, C.; Manoli, Y. Inductance calculation of planar multi-layer and multi-wire coils: an analytical approach. Sens. Actuators. A. Phys. 2008, 145-146, 394-404.
49. Rosa, E. B. The self and mutual inductances of linear conductors. Available from: https://nvlpubs.nist.gov/nistpubs/bulletin/04/nbsbulletinv4n2p301_a2b.pdf. [Last accessed on 10 Jan 2025].
50. Wang, H.; Totaro, M.; Veerapandian, S.; et al. Folding and bending planar coils for highly precise soft angle sensing. Adv. Mater. Technol. 2020, 5, 2000659.
51. Kawasetsu, T.; Horii, T.; Ishihara, H.; Asada, M. Flexible tri-axis tactile sensor using spiral inductor and magnetorheological elastomer. IEEE. Sensors. J. 2018, 18, 5834-41.
52. Zhu, Y.; Zhou, W.; Yao, S. Gas permeable, ultrathin, stretchable epidermal electronic devices and related methods. US 20220340726A1, 2022. Available from: https://patents.google.com/patent/US20220340726A1/en. [Last accessed on 10 Jan 2025].
53. Yao, S.; Yang, J.; Poblete, F. R.; Hu, X.; Zhu, Y. Multifunctional electronic textiles using silver nanowire composites. ACS. Appl. Mater. Interfaces. 2019, 11, 31028-37.
54. Trotec. Laser cutting and engraving machine Speedy Series. Available from: https://www.troteclaser.com/en-us/laser-machines/laser-engravers-speedy-series. [Last accessed on 10 Jan 2025].
55. Yeh, S.; Fang, W. Inductive micro tri-axial tactile sensor using a CMOS chip with a coil array. IEEE. Electron. Device. Lett. 2019, 40, 620-3.
56. Wattanasarn, S.; Noda, K.; Matsumoto, K.; et al. 3D flexible tactile sensor using electromagnetic induction coils. In 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France, January 29-February 2, 2012; Publisher: IEEE; pp 488-91.
57. Du, L.; Zhu, X.; Zhe, J. An inductive sensor for real-time measurement of plantar normal and shear forces distribution. IEEE. Trans. Biomed. Eng. 2015, 62, 1316-23.
58. Hamaguchi, S.; Kawasetsu, T.; Horii, T.; et al. Soft inductive tactile sensor using flow-channel enclosing liquid metal. IEEE. Robot. Autom. Lett. 2020, 5, 4028-34.
59. Casanova, J. J.; Low, Z. N.; Lin, J.; et al. Transmitting coil achieving uniform magnetic field distribution for planar wireless power transfer system. In 2009 IEEE Radio and Wireless Symposium, San Diego, USA, January 18-22, 2009; Publisher: IEEE; pp 530-3.
60. Xu, Q.; Hu, Q.; Wang, H.; Mao, Z.; Sun, M. Optimal design of planar spiral coil for uniform magnetic field to wirelessly power position-free targets. IEEE. Trans. Magn. 2021, 57, 1-9.
61. Li, S.; Niu, P.; Yu, L.; et al. Design method of primary transmitting coil for realizing large uniform magnetic field distribution. In 2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Huhhot, China, September 14-16, 2018; Publisher: IEEE; pp 112-6.
62. Diao, Y.; Shen, Y.; Gao, Y. Design of coil structure achieving uniform magnetic field distribution for wireless charging platform. In 2011 4th International Conference on Power Electronics Systems and Applications, Hong Kong, China, June 8-10, 2011; Publisher: IEEE; pp 1-5.
63. Gefen, A.; Ousey, K. COVID-19: pressure ulcers, pain and the cytokine storm. J. Wound. Care. 2020, 29, 540-2.
64. StatPearls Publishing. Pressure ulcer. Available from: https://www.ncbi.nlm.nih.gov/books/NBK553107/. [Last accessed on 10 Jan 2025].
65. Gu, M.; Zhao, B.; Gao, J.; et al. Nested-cell architecture and molecular surface modification enabled 10 megapascals range high sensitivity flexible pressure sensors for application in extreme environment. Adv. Funct. Mater. 2024, 34, 2400494.
66. Yao, S.; Zhu, Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 2014, 6, 2345-52.
67. Arazpour, M.; Bani, M. A.; Hutchins, S. W. Reciprocal gait orthoses and powered gait orthoses for walking by spinal cord injury patients. Prosthet. Orthot. Int. 2013, 37, 14-21.
68. Lourenco, L.; Blanes, L.; Salomé, G. M.; Ferreira, L. M. Quality of life and self-esteem in patients with paraplegia and pressure ulcers: a controlled cross-sectional study. J. Wound. Care. 2014, 23, 331-4,336.
69. Lyder C.; E., A. Pressure Ulcers: A Patient Safety Issue. In Patient Safety and Quality: An Evidence-Based Handbook for Nurses; Hughes R.G., Eds.; Vol. 3; Rockville (MD): Agency for Healthcare Research and Quality (US); 2008, Chapter 12.
70. Devanand, D. B.; Kedgley, A. E. Objective methods of monitoring usage of orthotic devices for the extremities: a systematic review. Sensors 2023, 23, 7420.