REFERENCES
1. Wang, Z.; Or, K.; Hirai, S. A dual-mode soft gripper for food packaging. Robot. Auton. Syst. 2020, 125, 103427.
2. Sinatra, N. R.; Teeple, C. B.; Vogt, D. M.; Parker, K. K.; Gruber, D. F.; Wood, R. J. Ultragentle manipulation of delicate structures using a soft robotic gripper. Sci. Robot. 2019, 4, eaax5425.
3. Liu, X.; Song, M.; Fang, Y.; Zhao, Y.; Cao, C. Worm-inspired soft robots enable adaptable pipeline and tunnel inspection. Adv. Intell. Syst. 2022, 4, 2100128.
4. Tang, Z. Q.; Heung, H. L.; Shi, X. Q.; Tong, R. K. Y.; Li, Z. Probabilistic model-based learning control of a soft pneumatic glove for hand rehabilitation. IEEE. Trans. Biomed. Eng. 2022, 69, 1016-28.
5. Runciman, M.; Darzi, A.; Mylonas, G. P. Soft robotics in minimally invasive surgery. Soft. Robot. 2019, 6, 423-43.
6. Jin, H.; Dong, E.; Alici, G.; et al. A starfish robot based on soft and smart modular structure (SMS) actuated by SMA wires. Bioinspir. Biomim. 2016, 11, 056012.
7. Wang, H.; Zhang, R.; Chen, W.; Liang, X.; Pfeifer, R. Shape detection algorithm for soft manipulator based on fiber bragg gratings. IEEE/ASME. Trans. Mechatron. 2016, 21, 2977-82.
8. Fei, Y.; Wang, J.; Pang, W. A novel fabric-based versatile and stiffness-tunable soft gripper integrating soft pneumatic fingers and wrist. Soft. Robot. 2019, 6, 1-20.
9. Park, Y. L.; Chau, K.; Black, R. J.; Cutkosky, M. R. Force sensing robot fingers using embedded fiber Bragg grating sensors and shape deposition manufacturing. In: Proceedings 2007 IEEE International Conference on Robotics and Automation; 2007 Apr 10-14; Rome, Italy. IEEE; 2017. pp. 1510-6.
10. Liu, Z.; Wang, Y.; Fei, Y. Soft pipe-climbing robot for vertical creeping locomotion. In: 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP); 2021 Nov 26-28; Shanghai, China. IEEE; 2021. pp. 316-21.
11. Zhou, P.; Yao, J.; Zhang, X.; Zhao, Y. Design and analysis of a muti-degree-of-freedom dexterous gripper with variable stiffness. In: Intelligent Robotics and Applications: 14th International Conference (ICIRA 2021). Spriger, Cham; 2021. pp. 129-39.
12. Zhang, F.; Jin, T.; Xue, Z.; Zhang, Y. Recent progress in three-dimensional flexible physical sensors. Int. J. Smart. Nano. Mater. 2022, 13, 17-41.
13. Liu, J.; Liao, F.; Chen, Z.; et al. Digitizing human motion via bending sensors toward humanoid robot. Adv. Intell. Syst. 2023, 5, 2200337.
14. Ta, T. D.; Umedachi, T.; Kawahara, Y. Inkjet printable actuators and sensors for soft-bodied crawling robots. In: 2019 International Conference on Robotics and Automation (ICRA); 2019 May 20-24; Montreal, Canada. IEEE; 2019. pp. 3658-64.
15. Song, Z.; Matsuda, R.; Matsubara, K.; Nakamura, F.; Ota, H. A caterpillar-inspired soft robot based on thermal expansion. In: 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS); 2020 Jan 18-22; Vancouver, Canada. IEEE; 2020. pp. 489-92.
16. Ge, Q.; Zhou, T.; Gong, T.; Liang, Y.; Augustine, N. L.; Chen, M. Highly sensitive measurement of finger joint angle based on a double-U tapered POF embedded in PDMS film. Opt. Fiber. Technol. 2023, 76, 103236.
17. Jin, G.; Sun, Y.; Geng, J.; et al. Bioinspired soft caterpillar robot with ultra-stretchable bionic sensors based on functional liquid metal. Nano. Energy. 2021, 84, 105896.
18. Vogt, D. M.; Wood, R. J. Wrist angle measurements using soft sensors. In: IEEE SENSORS 2014 Proceedings (SENSORS); 2014 Nov 02-05; Valencia, Spain. IEEE; 2014. pp. 1631-4.
19. Wu, P.; Yiu, C. K.; Huang, X.; et al. Liquid metal-based strain-sensing glove for human-machine interaction. Soft. Sci. 2023, 3, 35.
20. Shu, J.; Wang, J.; Su, Y.; Liu, H.; Li, Z.; Tong, R. K. An end-to-end posture perception method for soft bending actuators based on kirigami-inspired piezoresistive sensors. In: 2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN); 2022 Sep 27-30; Ioannina, Greece. IEEE; 2022. pp. 1-5.
21. Lee, D. H.; Yang, J. C.; Sim, J. Y.; Kang, H.; Kim, H. R.; Park, S. Bending sensor based on controlled microcracking regions for application toward wearable electronics and robotics. ACS. Appl. Mater. Interfaces. 2022, 14, 31312-20.
22. Jan, A. A.; Kim, S.; Kim, S. A skin-wearable and self-powered laminated pressure sensor based on triboelectric nanogenerator for monitoring human motion. Soft. Sci. 2024, 4, 10.
23. Gao, Z.; Ren, B.; Fang, Z.; Kang, H.; Han, J.; Li, J. Accurate recognition of object contour based on flexible piezoelectric and piezoresistive dual mode strain sensors. Sens. Actuators. A. Phys. 2021, 332, 113121.
24. Chillara, V. S. C.; Ramanathan, A. K.; Dapino, M. J. Self-sensing piezoelectric bistable laminates for morphing structures. Smart. Mater. Struct. 2020, 29, 085008.
25. Guess, M.; Soltis, I.; Rigo, B.; et al. Wireless batteryless soft sensors for ambulatory cardiovascular health monitoring. Soft. Sci. 2023, 3, 24.
26. Peng, Y.; Wang, J.; Tian, X.; Liu, T.; Geng, W.; Zhu, Z. An electronic skin strain sensor for adaptive angle calculation. IEEE. Sensors. J. 2022, 22, 12629-36.
27. Huang, T.; He, P.; Wang, R.; et al. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors. Adv. Funct. Mater. 2019, 29, 1903732.
28. Wang, X.; Qiu, Y.; Cao, W.; Hu, P. Highly stretchable and conductive core–sheath chemical vapor deposition graphene fibers and their applications in safe strain sensors. Chem. Mater. 2015, 27, 6969-75.
29. Wang, R.; Jiang, N.; Su, J.; et al. A Bi-sheath fiber sensor for giant tensile and torsional displacements. Adv. Funct. Mater. 2017, 27, 1702134.
30. To, C.; Hellebrekers, T.; Jung, J.; Yoon, S. J.; Park, Y. A soft optical waveguide coupled with fiber optics for dynamic pressure and strain sensing. IEEE. Robot. Autom. Lett. 2018, 3, 3821-7.
31. Wu, C.; Liu, X.; Ying, Y. Soft and stretchable optical waveguide: light delivery and manipulation at complex biointerfaces creating unique windows for on-body sensing. ACS. Sens. 2021, 6, 1446-60.
32. Zhao, H.; O'Brien, K.; Li, S.; Shepherd, R. F. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci. Robot. 2016, 1, eaai7529.
33. Krauss, H.; Takemura, K. Stretchable optical waveguide sensor capable of two-degree-of-freedom strain sensing mediated by a semidivided optical core. IEEE/ASME. Trans. Mechatron. 2022, 27, 2151-7.
34. Chen, W.; Xiong, C.; Liu, C.; Li, P.; Chen, Y. Fabrication and dynamic modeling of bidirectional bending soft actuator integrated with optical waveguide curvature sensor. Soft. Robot. 2019, 6, 495-506.
35. Kim, T.; Lee, S.; Hong, T.; Shin, G.; Kim, T.; Park, Y. L. Heterogeneous sensing in a multifunctional soft sensor for human-robot interfaces. Sci. Robot. 2020, 5, eabc6878.
36. Bai, H.; Li, S.; Barreiros, J.; Tu, Y.; Pollock, C. R.; Shepherd, R. F. Stretchable distributed fiber-optic sensors. Science 2020, 370, 848-52.
37. Liu, X.; Wang, L.; Xiang, Y.; et al. Magnetic soft microfiberbots for robotic embolization. Sci. Robot. 2024, 9, eadh2479.
38. Xing, L.; Wang, X.; Li, M.; et al. Self-adhesive, stretchable waterborne polyurethane-based flexible film as wearable conformal strain sensor for motion and health monitoring. Adv. Nanocompos. 2024, 1, 171-9.
39. Zhao, H.; Jalving, J.; Huang, R.; Knepper, R.; Ruina, A.; Shepherd, R. A helping hand: soft orthosis with integrated optical strain sensors and EMG control. IEEE. Robot. Automat. Mag. 2016, 23, 55-64.
41. Gray, G. T.; Maudlin, P. J.; Hull, L. M.; Zuo, Q. K.; Chen, S. Predicting material strength, damage, and fracture The synergy between experiment and modeling. J. Fail. Anal. Preven. 2005, 5, 7-17.
42. Zhang, J.; Lai, S.; Yu, H.; et al. Fruit classification utilizing a robotic gripper with integrated sensors and adaptive grasping. Math. Probl. Eng. 2021, 2021, 1-15.
43. Liu, S.; Wang, Y.; Li, Z.; Jin, M.; Ren, L.; Liu, C. A fluid-driven soft robotic fish inspired by fish muscle architecture. Bioinspir. Biomim. 2022, 17, 026009.
44. Li, G.; Chen, X.; Zhou, F.; et al. Self-powered soft robot in the Mariana Trench. Nature 2021, 591, 66-71.