REFERENCES
1. Semproni, F.; Iacovacci, V.; Menciassi, A. Bladder monitoring systems: state of the art and future perspectives. IEEE. Access. 2022, 10, 125626-51.
2. Lemack, G. E. Defining the role of overactive bladder treatments in men with lower urinary tract symptoms. Nat. Clin. Pract. Urol. 2007, 4, 174-5.
3. Jang, T. M.; Lee, J. H.; Zhou, H.; et al. Expandable and implantable bioelectronic complex for analyzing and regulating real-time activity of the urinary bladder. Sci. Adv. 2020, 6, eabc9675.
4. Klein, R. D.; Hultgren, S. J. Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat. Rev. Microbiol. 2020, 18, 211-26.
6. Sands, J. M.; Layton, H. E. Advances in understanding the urine-concentrating mechanism. Annu. Rev. Physiol. 2014, 76, 387-409.
7. Griffiths, D. Neural control of micturition in humans: a working model. Nat. Rev. Urol. 2015, 12, 695-705.
8. Franken, J.; De, B. H.; Rietjens, R.; et al. X-ray videocystometry for high-speed monitoring of urinary tract function in mice. Sci. Adv. 2021, 7, eabi6821.
9. Osman, N. I.; Esperto, F.; Chapple, C. R. Detrusor underactivity and the underactive bladder: a systematic review of preclinical and clinical studies. Eur. Urol. 2018, 74, 633-43.
10. Mariano L, Ingersoll MA. The immune response to infection in the bladder. Nat. Rev. Urol. 2020, 17, 439-58.
11. Kwon, J.; Kim, D. Y.; Cho, K. J.; et al. Pathophysiology of overactive bladder and pharmacologic treatments including β3-adrenoceptor agonists -basic research perspectives. Int. Neurourol. J. 2024, 28, 12-33.
12. Jonas, C.; Lockl, J.; Röglinger, M.; Weidlich, R. Designing a wearable IoT-based bladder level monitoring system for neurogenic bladder patients. Eur. J. Inf. Syst. 2024, 33, 993-1015.
13. Vasquez, E. J.; Kendall, A.; Musulin, S.; Vaden, S. L. Three-dimensional bladder ultrasound to measure daily urinary bladder volume in hospitalized dogs. J. Vet. Intern. Med. 2021, 35, 2256-62.
14. Kothapalli, S. R.; Sonn, G. A.; Choe, J. W.; et al. Simultaneous transrectal ultrasound and photoacoustic human prostate imaging. Sci. Transl. Med. 2019, 11, eaav2169.
15. Angermund, A.; Inglese, G.; Goldstine, J.; Iserloh, L.; Libutzki, B. The burden of illness in initiating intermittent catheterization: an analysis of German health care claims data. BMC. Urol. 2021, 21, 57.
17. Zamli, A. H.; Ratnalingam, K.; Yusmido, Y. A.; Ong, K. G. Diagnostic accuracy of single channel cystometry for neurogenic bladder diagnosis following spinal cord injury: a pilot study. Spinal. Cord. Ser. Cases. 2017, 3, 16044.
18. Akcay, A.; Yagci, A. B.; Celen, S.; Ozlulerden, Y.; Turk, N. S.; Ufuk, F. VI-RADS score and tumor contact length in MRI: a potential method for the detection of muscle invasion in bladder cancer. Clin. Imaging. 2021, 77, 25-36.
19. Cornelissen, S. W. E.; Veenboer, P. W.; Wessels, F. J.; Meijer, R. P. Diagnostic accuracy of multiparametric MRI for local staging of bladder cancer: a systematic review and meta-analysis. Urology 2020, 145, 22-9.
20. Morcos, S. K. Computed tomography urography technique, indications and limitations. Curr. Opin. Urol. 2007, 17, 56-64.
21. Yu, H.; Liu, Y.; Zhou, G.; Peng, M. Multilayer perceptron algorithm-assisted flexible piezoresistive PDMS/chitosan/cMWCNT sponge pressure sensor for sedentary healthcare monitoring. ACS. Sens. 2023, 8, 4391-401.
22. Kumar, M. N.; Muzzarelli, R. A.; Muzzarelli, C.; Sashiwa, H.; Domb, A. J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 2004, 104, 6017-84.
23. Ke, C. L.; Deng, F. S.; Chuang, C. Y.; Lin, C. H. Antimicrobial actions and applications of chitosan. Polymers 2021, 13, 904.
24. Ben, Z. Y.; Samsudin, H.; Yhaya, M. F. Glycerol: its properties, polymer synthesis, and applications in starch based films. Eur. Polym. J. 2022, 175, 111377.
25. Paudel, S.; Regmi, S.; Janaswamy, S. Effect of glycerol and sorbitol on cellulose-based biodegradable films. Food. Packag. Shelf. Life. 2023, 37, 101090.
26. Zeng, H.; Guo, J.; Zhang, Y.; et al. Green glycerol tailored composite membranes with boosted nanofiltration performance. J. Membr. Sci. 2022, 663, 121064.
27. Kim, J.; Jeerapan, I.; Imani, S.; et al. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS. Sens. 2016, 1, 1011-9.
28. Liao, W. C.; Jaw, F. S. Noninvasive electrical impedance analysis to measure human urinary bladder volume. J. Obstet. Gynaecol. Res. 2011, 37, 1071-5.
29. Simić, M.; Freeborn, T. J.; Šekara, T. B.; Stavrakis, A. K.; Jeoti, V.; Stojanović, G. M. A novel method for in-situ extracting bio-impedance model parameters optimized for embedded hardware. Sci. Rep. 2023, 13, 5070.
30. Hafid, A.; Difallah, S.; Alves, C.; et al. State of the art of non-invasive technologies for bladder monitoring: a scoping review. Sensors 2023, 23, 2758.
31. Lim, C.; Hong, Y. J.; Jung, J.; et al. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci. Adv. 2021, 7, eabd3716.
32. Cheng, T.; Zhang, Y.; Lai, W. Y.; Huang, W. Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv. Mater. 2015, 27, 3349-76.
33. Zhang, J.; Hu, Y.; Zhang, L.; Zhou, J.; Lu, A. Transparent, ultra-stretching, tough, adhesive carboxyethyl chitin/polyacrylamide hydrogel toward high-performance soft electronics. Nanomicro. Lett. 2022, 15, 8.
34. Peng, X.; Dong, K.; Zhang, Y.; et al. Sweat-permeable, biodegradable, transparent and self-powered chitosan-based electronic skin with ultrathin elastic gold nanofibers. Adv. Funct. Mater. 2022, 32, 2112241.
35. Rinaudo, M. Chitin and chitosan: properties and applications. Prog. Polym. Sci. 2006, 31, 603-32.
36. Ma, Y.; Xin, L.; Tan, H.; et al. Chitosan membrane dressings toughened by glycerol to load antibacterial drugs for wound healing. Mater. Sci. Eng. C. Mater. Biol. Appl. 2017, 81, 522-31.
37. Zahed, M. A.; Kim, D. K.; Jeong, S. H.; et al. Microfluidic-integrated multimodal wearable hybrid patch for wireless and continuous physiological monitoring. ACS. Sens. 2023, 8, 2960-74.
38. El-hafian, E. A.; Elgannoudi, E. S.; Mainal, A.; Yahaya, A. H. B. Characterization of chitosan in acetic acid: rheological and thermal studies. Turk. J. Chem. 2010, 34, 47.
39. Giraldo, J. D.; Rivas, B. L. Direct ionization and solubility of chitosan in aqueous solutions with acetic acid. Polym. Bull. 2021, 78, 1465-88.
40. Li, P.; Deng, Y.; Zou, W.; Ma, Z.; Yang, X.; Zhao, Q. Biosafe Cu-MOF loaded chitosan/gelatin-based multifunctional packaging film for monitoring shrimp freshness. Food. Hydrocoll. 2025, 160, 110721.
41. Zhou, C.; Bai, J.; Zhang, F.; et al. Development of mussel-inspired chitosan-derived edible coating for fruit preservation. Carbohydr. Polym. 2023, 321, 121293.
42. Bakhshandeh, F.; Zheng, H.; Barra, N. G.; et al. Wearable aptalyzer integrates microneedle and electrochemical sensing for in vivo monitoring of glucose and lactate in live animals. Adv. Mater. 2024, 36, e2313743.
43. Verma, K. D.; Sinha, P.; Ghorai, M. K.; Kar, K. K. Mesoporous electrode from human hair and bio-based gel polymer electrolyte for high-performance supercapacitor. Diam. Relat. Mater. 2022, 123, 108879.
44. Yuan, Z.; Hou, L.; Bariya, M.; et al. A multi-modal sweat sensing patch for cross-verification of sweat rate, total ionic charge, and Na+ concentration. Lab. Chip. 2019, 19, 3179-89.
45. Hofmann, T.; Helbig, T.; Schindler, F.; et al. Reciprocal skin effect and its realization in a topolectrical circuit. Phys. Rev. Research. 2020, 2, 023265.
46. Stankiewicz, J. M. Analysis of the influence of the skin effect on the efficiency and power of the receiver in the periodic WPT system. Energies 2023, 16, 2009.
47. Humphrey, J. Review paper: continuum biomechanics of soft biological tissues. Proc. R. Soc. Lond. A. 2003, 459, 3-46.
48. Kemp, N. T. A tutorial on electrochemical impedance spectroscopy and nanogap electrodes for biosensing applications. IEEE. Sensors. J. 2021, 21, 22232-45.
49. Yang, Y.; Wang, J.; Wang, L.; et al. Magnetic soft robotic bladder for assisted urination. Sci. Adv. 2022, 8, eabq1456.
50. Gouin, K. H.; Ing, N.; Plummer, J. T.; et al. An N-cadherin 2 expressing epithelial cell subpopulation predicts response to surgery, chemotherapy and immunotherapy in bladder cancer. Nat. Commun. 2021, 12, 4906.
51. Swaminathan, N.; Priyanka, P.; Rathore, A. S.; Sivaprakasam, S.; Subbiah, S. Cole-Cole modeling of real-time capacitance data for estimation of cell physiological properties in recombinant Escherichia coli cultivation. Biotechnol. Bioeng. 2022, 119, 922-35.
52. Alam, A. U.; Clyne, D.; Jin, H.; Hu, N. X.; Deen, M. J. Fully integrated, simple, and low-cost electrochemical sensor array for in situ water quality monitoring. ACS. Sens. 2020, 5, 412-22.
53. Wang, J.; Ke, T.; Hou, M.; Hu, G. The design of home fire monitoring system based on NB-IoT. IJACSA. 2022, 13, 35-42.
54. Vázquez-López, A.; Del, R. S. J. S.; de, V. J.; Ao, X.; Wang, D. Y. All-fabric triboelectric nanogenerator (AF-TENG) smart face mask: remote long-rate breathing monitoring and apnea alarm. ACS. Sens. 2023, 8, 1684-92.
55. Mahapatra, S.; Kumari, R.; Chandra, P. Printed circuit boards: system automation and alternative matrix for biosensing. Trends. Biotechnol. 2024, 42, 591-611.
56. Fonseca, L. A. L. O.; Iano, Y.; Oliveira, G. G. D.; et al. Automatic printed circuit board inspection: a comprehensible survey. Discov. Artif. Intell. 2024, 4, 81.
57. Ha, H.; Qaiser, N.; Yun, T. G.; Cheong, J. Y.; Lim, S.; Hwang, B. Sensing mechanism and application of mechanical strain sensor: a mini-review. FU. Mech. Eng. 2023, 21, 751.
58. Gaubert, V.; Gidik, H.; Koncar, V. Smart underwear, incorporating textrodes, to estimate the bladder volume: proof of concept on a test bench. Smart. Mater. Struct. 2020, 29, 085028.
59. Li, Y.; Peng, Y.; Yang, X.; et al. Analysis of measurement electrode location in bladder urine monitoring using electrical impedance. Biomed. Eng. Online. 2019, 18, 34.