REFERENCES
1. Lee, H. J.; Joyce, R.; Lee, J. Liquid polymer/metallic salt-based stretchable strain sensor to evaluate fruit growth. ACS. Appl. Mater. Interfaces. 2022, 14, 5983-94.
2. Nagelmüller, S.; Kirchgessner, N.; Yates, S.; Hiltpold, M.; Walter, A. Leaf length tracker: a novel approach to analyse leaf elongation close to the thermal limit of growth in the field. J. Exp. Bot. 2016, 67, 1897-906.
3. Li, S.; Wang, H.; Ma, W.; et al. Monitoring blood pressure and cardiac function without positioning via a deep learning-assisted strain sensor array. Sci. Adv. 2023, 9, eadh0615.
4. Gong, T.; Zhang, H.; Huang, W.; et al. Highly responsive flexible strain sensor using polystyrene nanoparticle doped reduced graphene oxide for human health monitoring. Carbon 2018, 140, 286-95.
5. Li, J.; Ding, Q.; Wang, H.; et al. Engineering smart composite hydrogels for wearable disease monitoring. Nanomicro. Lett. 2023, 15, 105.
6. Zhang, Z.; Chen, G.; Xue, Y.; et al. Fatigue-resistant conducting polymer hydrogels as strain sensor for underwater robotics. Adv. Funct. Mater. 2023, 33, 2305705.
7. Yang, D.; Feng, M.; Gu, G. High-stroke, high-output-force, fabric-lattice artificial muscles for soft robots. Adv. Mater. 2024, 36, e2306928.
8. Li, J.; Cao, J.; Lu, B.; Gu, G. 3D-printed PEDOT:PSS for soft robotics. Nat. Rev. Mater. 2023, 8, 604-22.
9. Yoon, H.; Ha, H.; Choi, C.; Yun, T. G.; Hwang, B. Mini review on PEDOT:PSS as a conducting material in energy harvesting and storage devices applications. J. Polym. Mater. 2023, 40, 1-17.
10. Sudhahar, S.; G, U.; Alla, J. P.; Jonnalagadda, R. R.; Lakshmi, S.; Gupta, S. Acrylic finished leather upgraded with thermoplastic polyurethane filament using 3D printing - a new generation hybrid leather of synthetic and natural polymer. J. Polym. Mater. 2023, 40, 33-45.
11. Shen, Z.; Liu, F.; Huang, S.; et al. Progress of flexible strain sensors for physiological signal monitoring. Biosens. Bioelectron. 2022, 211, 114298.
12. Lin, J.; Chen, X.; Zhang, P.; et al. Wireless bioelectronics for in vivo pressure monitoring with mechanically-compliant hydrogel biointerfaces. Adv. Mater. 2024, 36, 2400181.
13. Wan, R.; Yu, J.; Quan, Z.; et al. A reusable, healable, and biocompatible PEDOT:PSS hydrogel-based electrical bioadhesive interface for high-resolution electromyography monitoring and time–frequency analysis. Chem. Eng. J. 2024, 490, 151454.
14. Ke, X.; Mu, X.; Chen, S.; et al. Reduced graphene oxide reinforced PDA-Gly-PVA composite hydrogel as strain sensors for monitoring human motion. Soft. Sci. 2023, 3, 21.
15. Yao, X.; Zhang, S.; Qian, L.; et al. Super stretchable, self-healing, adhesive ionic conductive hydrogels based on tailor-made ionic liquid for high-performance strain sensors. Adv. Funct. Mater. 2022, 32, 2204565.
16. Zhu, H.; Hu, X.; Liu, B.; Chen, Z.; Qu, S. 3D printing of conductive hydrogel-elastomer hybrids for stretchable electronics. ACS. Appl. Mater. Interfaces. 2021, 13, 59243-51.
17. Yang, J.; Cheng, J.; Qi, G.; Wang, B. Ultrastretchable, multihealable, and highly sensitive strain sensor based on a double cross-linked MXene hydrogel. ACS. Appl. Mater. Interfaces. 2023, 15, 17163-74.
18. Wang, F.; Xue, Y.; Chen, X.; et al. 3D printed implantable hydrogel bioelectronics for electrophysiological monitoring and electrical modulation. Adv. Funct. Mater. 2024, 34, 2314471.
19. Su, X.; Wu, X.; Chen, S.; et al. A highly conducting polymer for self-healable, printable, and stretchable organic electrochemical transistor arrays and near hysteresis-free soft tactile sensors. Adv. Mater. 2022, 34, e2200682.
20. Wei, J.; Zheng, Y.; Chen, T. A fully hydrophobic ionogel enables highly efficient wearable underwater sensors and communicators. Mater. Horiz. 2021, 8, 2761-70.
21. Xiong, Y.; Lin, Z.; Zhao, Z.; et al. A template-stripped carbon nanofiber/poly(styrene-butadiene-styrene) compound for high-sensitivity pressure and strain sensing. Soft. Sci. 2022, 2, 14.
22. Zhang, J.; Wang, M.; Yang, Z.; Zhang, X. Highly flexible and stretchable strain sensors based on conductive whisker carbon nanotube films. Carbon 2021, 176, 139-47.
23. Park, H.; Kim, D. S.; Hong, S. Y.; et al. A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays. Nanoscale 2017, 9, 7631-40.
24. Abed, A.; Samouh, Z.; Cochrane, C.; et al. Piezo-resistive properties of bio-based sensor yarn made with sisal fibre. Sensors 2021, 21, 4083.
25. Wu, Z.; Zhao, Q.; Luo, X.; et al. Low-cost fabrication of high-performance fluorinated polythiophene-based vis–NIR electrochromic devices toward deformable display and camouflage. Chem. Mater. 2022, 34, 9923-33.
26. Xie, H.; Huang, Z.; Wan, J.; et al. Dual-band laser selective etching for stretchable and strain interference-free pressure sensor arrays. Adv. Funct. Mater. 2024, 34, 2401532.
27. Yue, Y.; Li, X.; Zhao, Z.; Wang, H.; Guo, X. Stretchable flexible sensors for smart tires based on laser-induced graphene technology. Soft. Sci. 2023, 3, 13.
28. Agarwala, S.; Goh, G. L.; Dinh, L. T. S.; et al. Wearable bandage-based strain sensor for home healthcare: combining 3D aerosol jet printing and laser sintering. ACS. Sens. 2019, 4, 218-26.
29. Shi, W.; Wang, Z.; Song, H.; et al. High-sensitivity and extreme environment-resistant sensors based on PEDOT:PSS@PVA hydrogel fibers for physiological monitoring. ACS. Appl. Mater. Interfaces. 2022, 14, 35114-25.
30. Li, C.; Cheng, J.; He, Y.; et al. Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing. Nat. Commun. 2023, 14, 4853.
31. Cheng, J.; Wang, R.; Sun, Z.; et al. Centrifugal multimaterial 3D printing of multifunctional heterogeneous objects. Nat. Commun. 2022, 13, 7931.
32. Zeng, S.; Zhang, J.; Zu, G.; Huang, J. Transparent, flexible, and multifunctional starch-based double-network hydrogels as high-performance wearable electronics. Carbohydr. Polym. 2021, 267, 118198.
33. Xia, S.; Zhang, Q.; Song, S.; Duan, L.; Gao, G. Bioinspired dynamic cross-linking hydrogel sensors with skin-like strain and pressure sensing behaviors. Chem. Mater. 2019, 31, 9522-31.
34. Wang, Q.; Liu, J.; Ran, X.; Zhang, D.; Shen, G.; Miao, M. High-performance flexible self-powered strain sensor based on carbon nanotube/ZnSe/CoSe2 nanocomposite film electrodes. Nano. Res. 2022, 15, 170-8.
35. Zhao, W.; Zhang, D.; Yang, Y.; Du, C.; Zhang, B. A fast self-healing multifunctional polyvinyl alcohol nano-organic composite hydrogel as a building block for highly sensitive strain/pressure sensors. J. Mater. Chem. A. 2021, 9, 22082-94.
36. Xia, X.; Xiang, Z.; Gao, Z.; et al. Structural design and DLP 3D printing preparation of high strain stable flexible pressure sensors. Adv. Sci. 2024, 11, e2304409.
37. Poompiew, N.; Pattananuwat, P.; Aumnate, C.; Román, A. J.; Osswald, T. A.; Potiyaraj, P. 3D printable resin/carbon nanotube composites for wearable strain sensors: enhancing mechanical and electrical properties. J. Sci. Adv. Mater. Dev. 2023, 8, 100546.
38. Han, S.; Wu, Q.; Xu, Y.; et al. Multi-functional eutectic hydrogel for 3D printable flexible omnidirectional strain sensors. Adv. Mater. Technol. 2023, 8, 2301123.
39. Guo, B.; Zhong, Y.; Chen, X.; Yu, S.; Bai, J. 3D printing of electrically conductive and degradable hydrogel for epidermal strain sensor. Compos. Commun. 2023, 37, 101454.
40. Zhang, C.; Zheng, H.; Sun, J.; et al. 3D printed, solid-state conductive ionoelastomer as a generic building block for tactile applications. Adv. Mater. 2022, 34, e2105996.
41. Ertugrul, I.; Ulkir, O.; Ersoy, S.; Ragulskis, M. Additive manufactured strain sensor using stereolithography method with photopolymer material. Polymers 2023, 15, 991.
42. Sanandiya, N. D.; Pai, A. R.; Seyedin, S.; Tang, F.; Thomas, S.; Xie, F. Chitosan-based electroconductive inks without chemical reaction for cost-effective and versatile 3D printing for electromagnetic interference (EMI) shielding and strain-sensing applications. Carbohydr. Polym. 2024, 337, 122161.
43. Christ, J. F.; Aliheidari, N.; Ameli, A.; Pötschke, P. 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Mater. Design. 2017, 131, 394-401.
44. Liu, Z.; Cai, M.; Hong, S.; et al. Data-driven inverse design of flexible pressure sensors. Proc. Natl. Acad. Sci. U. S. A. 2024, 121, e2320222121.
45. Jiang, Y.; Liu, Z.; Matsuhisa, N.; et al. Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors. Adv. Mater. 2018, 30, e1706589.
46. Yuk, H.; Lu, B.; Lin, S.; et al. 3D printing of conducting polymers. Nat. Commun. 2020, 11, 1604.
47. Shen, Z.; Zhang, Z.; Zhang, N.; et al. High-stretchability, ultralow-hysteresis conductingpolymer hydrogel strain sensors for soft machines. Adv. Mater. 2022, 34, e2203650.
48. Cao, J.; Zhang, Z.; Li, K.; et al. Self-healable PEDOT:PSS-PVA nanocomposite hydrogel strain sensor for human motion monitoring. Nanomaterials 2023, 13, 2465.
49. Yang, R.; Tu, Z.; Chen, X.; Wu, X. Highly stretchable, robust, sensitive and wearable strain sensors based on mesh-structured conductive hydrogels. Chem. Eng. J. 2024, 480, 148228.
50. Peng, X.; Wang, W.; Yang, W.; et al. Stretchable, compressible, and conductive hydrogel for sensitive wearable soft sensors. J. Colloid. Interface. Sci. 2022, 618, 111-20.
51. Peng, Y.; Pi, M.; Zhang, X.; et al. High strength, antifreeze, and moisturizing conductive hydrogel for human-motion detection. Polymer 2020, 196, 122469.
52. Gong, J.; Sun, F.; Pan, Y.; et al. Stretchable and tough PAANa/PEDOT:PSS/PVA conductive hydrogels for flexible strain sensors. Mater. Today. Commun. 2022, 33, 104324.