REFERENCES
1. Xu C, Chen J, Zhu Z, et al. Flexible pressure sensors in human-machine interface applications. Small 2024;20:e2306655.
2. Shi L, Li Z, Chen M, Zhu T, Wu L. Ultrasensitive and ultraprecise pressure sensors for soft systems. Adv Mater 2023;35:e2210091.
3. Li J, Jia H, Zhou J, et al. Thin, soft, wearable system for continuous wireless monitoring of artery blood pressure. Nat Commun 2023;14:5009.
4. Park SW, Das PS, Chhetry A, Park JY. A flexible capacitive pressure sensor for wearable respiration monitoring system. IEEE Sensors J 2017;17:6558-64.
5. Zulkifli NA, Jeong W, Kim M, et al. 3D-printed magnetic-based air pressure sensor for continuous respiration monitoring and breathing rehabilitation. Soft Sci 2024;4:20.
6. Park Y, Luan H, Kwon K, et al. Soft, full Wheatstone bridge 3D pressure sensors for cardiovascular monitoring. npj Flex Electron 2024;8:294.
7. Dahiya RS, Metta G, Valle M, Sandini G. Tactile sensing - from humans to humanoids. IEEE Trans Robot 2010;26:1-20.
8. Jan AA, Kim S, Kim S. A skin-wearable and self-powered laminated pressure sensor based on triboelectric nanogenerator for monitoring human motion. Soft Sci 2024;4:10.
9. De Tommasi F, Lo Presti D, Virgili F, Massaroni C, Schena E, Carassiti M. Soft system based on fiber bragg grating sensor for loss of resistance detection during epidural procedures: in silico and in vivo assessment. Sensors 2021;21:5329.
10. Bandari N, Dargahi J, Packirisamy M. Tactile sensors for minimally invasive surgery: a review of the state-of-the-art, applications, and perspectives. IEEE Access 2020;8:7682-708.
11. Tian S, Wang Y, Deng H, Wang Y, Zhang X. Flexible pressure and temperature sensors towards e-skin: material, mechanism, structure and fabrication. Soft Sci 2023;3:30.
12. Sun G, Wang P, Jiang Y, Sun H, Meng C, Guo S. Recent advances in flexible and soft gel-based pressure sensors. Soft Sci 2022;2:17.
13. Tian H, Shu Y, Wang XF, et al. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci Rep 2015;5:8603.
14. Cao Y, Li J, Dong Z, et al. Flexible tactile sensor with an embedded-hair-in-elastomer structure for normal and shear stress sensing. Soft Sci 2023;3:32.
15. Zhang Y, Liu C, Jia B, et al. Kirigami-inspired, three-dimensional piezoelectric pressure sensors assembled by compressive buckling. npj Flex Electron 2024;8:310.
16. Huang Y, Liu B, Zhang W, et al. Highly sensitive active-powering pressure sensor enabled by integration of double-rough surface hydrogel and flexible batteries. npj Flex Electron 2022;6:226.
17. Pruvost M, Smit WJ, Monteux C, Poulin P, Colin A. Polymeric foams for flexible and highly sensitive low-pressure capacitive sensors. npj Flex Electron 2019;3:52.
18. Liu J, Tian G, Yang W, Deng W. Recent progress in flexible piezoelectric devices toward human-machine interactions. Soft Sci 2022;2:22.
19. Kim KH, Kim JH, Ko YJ, Lee HE. Body-attachable multifunctional electronic skins for bio-signal monitoring and therapeutic applications. Soft Sci 2024;4:24.
20. Lee JH, Yoon HJ, Kim TY, et al. Micropatterned P(VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors. Adv Funct Mater 2015;25:3203-9.
21. Park J, Lee Y, Hong J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 2014;8:4689-97.
22. Moeinnia H, Agron DJ, Ganzert C, Schubert L, Kim WS. Wireless pressure monitoring system utilizing a 3D-printed Origami pressure sensor array. npj Flex Electron 2024;8:309.
23. Liu H, Huang W, Gao J, et al. Piezoresistive behavior of porous carbon nanotube-thermoplastic polyurethane conductive nanocomposites with ultrahigh compressibility. Appl Phys Lett 2016;108:011904.
24. Park YJ, Sharma BK, Shinde SM, et al. All MoS2-based large area, skin-attachable active-matrix tactile sensor. ACS Nano 2019;13:3023-30.
25. Massaroni C, Vitali L, Lo Presti D, Silvestri S, Schena E. Fully additively 3D manufactured conductive deformable sensors for pressure sensing. Adv Intell Syst 2024;6:2300901.
26. Hu J, Dun G, Geng X, Chen J, Wu X, Ren TL. Recent progress in flexible micro-pressure sensors for wearable health monitoring. Nanoscale Adv 2023;5:3131-45.
27. Chun J, Lee KY, Kang CY, Kim MW, Kim SW, Baik JM. Embossed hollow hemisphere-based piezoelectric nanogenerator and highly responsive pressure sensor. Adv Funct Mater 2014;24:2038-43.
28. Chi C, Sun X, Xue N, Li T, Liu C. Recent progress in technologies for tactile sensors. Sensors 2018;18:948.
29. Metzger C, Fleisch E, Meyer J, et al. Flexible-foam-based capacitive sensor arrays for object detection at low cost. Appl Phys Lett 2008;92:013506.
30. He F, Huang Q, Qin M. A silicon directly bonded capacitive absolute pressure sensor. Sens Actuators A Phys 2007;135:507-14.
31. Wang X, Yu J, Cui Y, Li W. Research progress of flexible wearable pressure sensors. Sens Actuators A Phys 2021;330:112838.
32. Lei KF, Lee K, Lee M. A flexible PDMS capacitive tactile sensor with adjustable measurement range for plantar pressure measurement. Microsyst Technol 2014;20:1351-8.
33. Rehan M, Saleem MM, Tiwana MI, Shakoor RI, Cheung R. A soft multi-axis high force range magnetic tactile sensor for force feedback in robotic surgical systems. Sensors 2022;22:3500.
34. Jiao J, Guo Y, Tong Q, et al. Stiffness-tunable and shape-locking soft actuators based on 3D-printed hybrid multi-materials. Soft Sci 2022;2:20.
35. Lin X, Han M. Recent progress in soft electronics and robotics based on magnetic nanomaterials. Soft Sci 2023;3:14.
36. Nguyen TV, Mizuki Y, Tsukagoshi T, Takahata T, Ichiki M, Shimoyama I. MEMS-based pulse wave sensor utilizing a piezoresistive cantilever. Sensors 2020;20:1052.
37. Kubba AE, Hasson A, Kubba AI, Hall G. A micro-capacitive pressure sensor design and modelling. J Sens Sens Syst 2016;5:95-112.
38. Parameswaran C, Gupta D. Large area flexible pressure/strain sensors and arrays using nanomaterials and printing techniques. Nano Converg 2019;6:28.
39. Romano C, Nicolò A, Innocenti L, et al. Respiratory rate estimation during walking and running using breathing sounds recorded with a microphone. Biosensors 2023;13:637.
40. Romano C, Formica D, Schena E, Massaroni C. Investigation of body locations for cardiac and respiratory monitoring with skin-interfaced inertial measurement unit sensors. IEEE Sensors J 2023;23:7806-15.
41. Romano C, Schena E, Silvestri S, Massaroni C. Non-contact respiratory monitoring using an RGB camera for real-world applications. Sensors 2021;21:5126.
42. Rinaldi A, Tamburrano A, Fortunato M, Sarto MS. A flexible and highly sensitive pressure sensor based on a PDMS foam coated with graphene nanoplatelets. Sensors 2016;16:2148.
43. Wei Y, Chen S, Lin Y, Yuan X, Liu L. Silver nanowires coated on cotton for flexible pressure sensors. J Mater Chem C 2016;4:935-43.
44. Massaroni C, Vitali L, Presti Lo D, Silvestri S, Schena E. Design, development and characterization of a novel fully additively manufactured deformable conductive force sensor. In: 2023 International Workshop on Biomedical Applications, Technologies and Sensors (BATS); 2023 Sep 28-29; Catanzaro, Italy. IEEE; 2023. pp. 22-7.
45. Yuan J, Li Q, Ding L, et al. Carbon black/multi-walled carbon nanotube-based, highly sensitive, flexible pressure sensor. ACS Omega 2022;7:44428-37.
46. Zhang F, Yang K, Pei Z, et al. A highly accurate flexible sensor system for human blood pressure and heart rate monitoring based on graphene/sponge. RSC Adv 2022;12:2391-8.
47. Fu J, Taher SE, Abu Al-rub RK, Zhang T, Chan V, Liao K. Engineering 3D-architected gyroid MXene scaffolds for ultrasensitive micromechanical sensing. Adv Eng Mater 2022;24:2101388.
48. Qi Z, Zhang T, Zhang X, Xu Q, Cao K, Chen R. MXene-based flexible pressure sensor with piezoresistive properties significantly enhanced by atomic layer infiltration. Nano Mater Sci 2023;5:439-46.
49. Zheng S, Wu X, Huang Y, et al. Highly sensitive and multifunctional piezoresistive sensor based on polyaniline foam for wearable Human-Activity monitoring. Compos Part A Appl Sci Manuf 2019;121:510-6.
50. Kang F, Zhang W, Liu M, Liu F, Jia Z, Jia D. Highly flexible and sensitive Ti3C2 MXene@polyurethane composites for piezoresistive pressure sensor. J Mater Sci 2022;57:12894-902.
51. Nicolò A, Massaroni C, Schena E, Sacchetti M. The importance of respiratory rate monitoring: from healthcare to sport and exercise. Sensors 2020;20:6396.
52. Masaoka Y, Homma I. Anxiety and respiratory patterns: their relationship during mental stress and physical load. Int J Psychophysiol 1997;27:153-9.
53. Tarassenko L, Hann A, Young D. Integrated monitoring and analysis for early warning of patient deterioration. Br J Anaesth 2006;97:64-8.
55. Romano C, Innocenti L, Schena E, Sacchetti M, Nicolò A, Massaroni C. A signal quality index for improving the estimation of breath-by-breath respiratory rate during sport and exercise. IEEE Sensors J 2023;23:31250-8.
56. Innocenti L, Romano C, Greco G, et al. Breathing monitoring in soccer: part I - validity of commercial wearable sensors. Sensors 2024;24:4571.
57. Massaroni C, Nicolò A, Lo Presti D, Sacchetti M, Silvestri S, Schena E. Contact-based methods for measuring respiratory rate. Sensors 2019;19:908.
58. de Groot-Driessen D, van de Sande P, van Heugten C. Speed of finger tapping as a predictor of functional outcome after unilateral stroke. Arch Phys Med Rehabil 2006;87:40-4.
59. Lee M, Jeong JH, Kim YH, Lee SW. Decoding finger tapping with the affected hand in chronic stroke patients during motor imagery and execution. IEEE Trans Neural Syst Rehabil Eng 2021;29:1099-109.