REFERENCES
1. Koo JH, Kim DC, Shim HJ, Kim T, Kim D. Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv Funct Mater 2018;28:1801834.
2. Park H, Lim D, Lee G, Baek MJ, Lee DW. Tailoring pressure sensitive adhesives with H6XDI-PEG diacrylate for strong adhesive strength and rapid strain recovery. Adv Funct Mater 2023;33:2305750.
3. Kim J, Shim HJ, Yang J, et al. Ultrathin quantum dot display integrated with wearable electronics. Adv Mater 2017;29:1700217.
4. Jeong YC. P-212: Late-News Poster: flexible cover window for foldable display. Symp Digest Tech Papers 2018;49:1921-4.
6. Kim DW, Kim SW, Lee G, et al. Fabrication of practical deformable displays: advances and challenges. Light Sci Appl 2023;12:61.
7. Bi S, Gao B, Han X, et al. Recent progress in printing flexible electronics: a review. Sci China Technol Sci 2023;67:2363-86.
8. Benedek I, Feldstein MM. Applications of pressure-sensitive products. 1st ed. Boca Raton: CRC Press; 2008.
11. Gengnagel C, Hernández EL, Bäumer R. Natural-fibre-reinforced plastics in actively bent structures. Proc Inst Civ Eng Constr Mater 2013;166:365-77.
12. Kim TW, Lee JS, Kim YC, Joo YC, Kim BJ. Bending strain and bending fatigue lifetime of flexible metal electrodes on polymer substrates. Materials 2019;12:2490.
14. Yeh M, Chang L, Cheng H, Wang P. Bending stress analysis of laminated foldable touch panel. Procedia Eng 2014;79:189-93.
15. Nishimura M, Hishinuma M, Yamaguchi H, Murayama A. 56-3: quantitative evaluation of neutral-plane splitting in foldable displays using folding stiffness measurements and finite element method simulations. SID Int Symp Dig Tech 2020;51:834-7.
16. Chae Y, Chae GS, Youn YO, Woo S, Shin SH, Lee J. Optimal design of thickness and young’s modulus of multi-layered foldable structure considering bending stress, neutral plane and delamination under 2.5 mm radius of curvature. Int J Precis Eng Manuf 2018;19:1143-54.
17. Hwang B, Lim S, Park M, Han S. Neutral plane control by using polymer/graphene flake composites for flexible displays. RSC Adv 2017;7:8186-91.
18. Park Y, Bang S, Hwang B, et al. 69-2: Development of flexible cover window for large foldable display with a pen-touch function. Symp Digest Tech Papers 2021;52:1033-5.
19. Choi GM, Jin J, Shin D, et al. Flexible hard coating: glass-like wear resistant, yet plastic-like compliant, transparent protective coating for foldable displays. Adv Mater 2017;29:1700205.
20. Jeong YC, Kim DG, Kim H. 66-1: invited paper: flexible yet robust cover window with enhanced bending stiffness. Symp Digest Tech Papers 2023;54:932-5.
21. Jeong SY, Shim HR, Na Y, et al. Foldable and washable textile-based OLEDs with a multi-functional near-room-temperature encapsulation layer for smart e-textiles. npj Flex Elect 2021;5:15.
22. Jeong EG, Kwon JH, Kang KS, Jeong SY, Choi KC. A review of highly reliable flexible encapsulation technologies towards rollable and foldable OLEDs. J Inform Display 2020;21:19-32.
23. Ha M, Choi J, Park B, Han K. Highly flexible cover window using ultra-thin glass for foldable displays. J Mech Sci Technol 2021;35:661-8.
24. Jo W, Jeong K, Park Y, Lee J, Gap Im S, Kim T. Thermally stable and soft pressure-sensitive adhesive for foldable electronics. Chem Eng J 2023;452:139050.
25. Salmon F, Everaerts A, Campbell C, Pennington B, Erdogan-haug B, Caldwell G. 64-1: modeling the mechanical performance of a foldable display panel bonded by 3M optically clear adhesives. Symp Digest Tech Papers 2017;48:938-41.
26. Han SH, Shin JH, Choi SS. Analytical investigation of multi-layered rollable displays considering nonlinear elastic adhesive interfaces. Sci Rep 2023;13:5697.
27. Kwon Y, Lee S, Kim J, et al. Ultraviolet light blocking optically clear adhesives for foldable displays via highly efficient visible-light curing. Nat Commun 2024;15:2829.
28. Back JH, Kwon Y, Cho H, et al. Visible-light-curable acrylic resins toward UV-light-blocking adhesives for foldable displays. Adv Mater 2023;35:e2204776.
29. Choi JW, Lee JH. Selectively UV-blocking and visibly transparent adhesive films embedded with TiO2/PMMA hybrid nanoparticles for displays. Materials 2020;13:5273.
30. Wu C, Zeng S, Wang Z, et al. Efficient mechanoluminescent elastomers for dual-responsive anticounterfeiting device and stretching/strain sensor with multimode sensibility. Adv Funct Mater 2018;28:1803168.
31. Wang J, Yao K, Cui K, et al. Contact electrification induced multicolor self-recoverable mechanoluminescent elastomer for wearable smart light-emitting devices. Adv Opt Mater 2023;11:2203112.
32. Wang C, Hu H, Peng D, Dong L, Zhu D. Soft devices empowered by mechanoluminescent materials. Soft Sci 2023;3:39.
33. Li L, Cheng L, Yang L, Zhang J. Multistimuli-responsive artificial skin with dual output of photoelectric signals. Macro Mater Eng 2021;306:2100017.
34. Abrahamson JT, Beagi HZ, Salmon F, Campbell CJ. Optically clear adhesives for OLED. In: Pyshkin S, editor. Luminescence - OLED technology and applications. IntechOpen; 2019.
35. Nishimura M, Takebayashi K, Hishinuma M, Yamaguchi H, Murayama A. A 5.5-inch full HD foldable AMOLED display based on neutral-plane splitting concept. J Soc Info Display 2019;27:480-6.
36. Su Y, Li S, Li R, Dagdeviren C. Splitting of neutral mechanical plane of conformal, multilayer piezoelectric mechanical energy harvester. Appl Phys Lett 2015;107:041905.
37. Hishinuma M, Nishimura M, Yamaguchi H, Murayama A. [FLX3-1(Invited)] Analysis of neutral-plane splitting for foldable displays using digital image correlation method. Proc Int Display Workshops 2020;27:898.
38. Lecavelier des Etangs-levallois A, Chen Z, Lesecq M, et al. A converging route towards very high frequency, mechanically flexible, and performance stable integrated electronics. J Appl Phys 2013;113:153701.
39. Shi Y, Rogers JA, Gao C, Huang Y. Multiple neutral axes in bending of a multiple-layer beam with extremely different elastic properties. J Appl Mech 2014;81:114501.
40. Li S, Su Y, Li R. Splitting of the neutral mechanical plane depends on the length of the multi-layer structure of flexible electronics. Proc Math Phys Eng Sci 2016;472:20160087.
41. Wald MJ, Salmon FT, Cosgrove DT, Everaerts AI, inventors; 3M Innovative Properties Co., assignee. Flexible displays having stiff layers for neutral plane adjustment. United States patent US10334723B2. 2016. Available from: https://patents.google.com/patent/US10334723B2/en?oq=US10334723B2. [Last accessed on 30 Jul 2024].
42. Jeong K, Kim D, Ahn D, et al. A hyperelastic adhesive forming multiple neutral planes even at extreme temperatures. Chem Eng J 2024;480:148151.
43. Nam J, Lee S, Han M, Lee H. Improved stack structure of rollable display to prevent delamination and permanent deformation. Int J Precis Eng Manuf 2021;22:671-8.
44. Okumura Y, Ito K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 2001;13:485-7.
45. Kato K, Ito K. Dynamic transition between rubber and sliding states attributed to slidable cross-links. Soft Matter 2011;7:8737-40.
46. Fleury G, Schlatter G, Brochon C, et al. Topological polymer networks with sliding cross-link points: the “sliding gels”. relationship between their molecular structure and the viscoelastic as well as the swelling properties. Macromolecules 2007;40:535-43.
47. Du R, Xu Z, Zhu C, et al. A Highly stretchable and self-healing supramolecular elastomer based on sliding crosslinks and hydrogen bonds. Adv Funct Mater 2020;30:1907139.
48. Bin Imran A, Esaki K, Gotoh H, et al. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat Commun 2014;5:5124.
49. Yi M, Lee T, Han G, et al. Movable cross-linking in adhesives: superior stretching and adhesion properties via a supramolecular sliding effect. ACS Appl Polym Mater 2021;3:2678-86.
50. Watabe T, Otsuka H. Enhancing the reactivity of mechanically responsive units via macromolecular design. Macromolecules 2024;57:425-33.
51. Wang S, Hu Y, Kouznetsova TB, et al. Facile mechanochemical cycloreversion of polymer cross-linkers enhances tear resistance. Science 2023;380:1248-52.
52. Ghanem MA, Basu A, Behrou R, et al. The role of polymer mechanochemistry in responsive materials and additive manufacturing. Nat Rev Mater 2021;6:84-98.
53. Wang S, Beech HK, Bowser BH, et al. Mechanism dictates mechanics: a molecular substituent effect in the macroscopic fracture of a covalent polymer network. J Am Chem Soc 2021;143:3714-8.
54. Beech HK, Wang S, Sen D, et al. Reactivity-guided depercolation processes determine fracture behavior in end-linked polymer networks. ACS Macro Lett 2023;12:1685-91.
55. Zhao C, Gong X, Wang S, Jiang W, Xuan S. Shear stiffening gels for intelligent anti-impact applications. Cell Rep Phys Sci 2020;1:100266.
56. Zhong D, Wu C, Jiang Y, et al. Author correction: high-speed and large-scale intrinsically stretchable integrated circuits. Nature 2024;630:E12.
57. Chun S, Kim DW, Baik S, et al. Conductive and stretchable adhesive electronics with miniaturized octopus-like suckers against dry/wet skin for biosignal monitoring. Adv Funct Mater 2018;28:1805224.
58. Ates HC, Nguyen PQ, Gonzalez-Macia L, et al. End-to-end design of wearable sensors. Nat Rev Mater 2022;7:887-907.
59. Choi S, Kwon S, Kim H, et al. Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays. Sci Rep 2017;7:6424.
60. Lee S, Kwon JH, Kwon S, Choi KC. A review of flexible OLEDs toward highly durable unusual displays. IEEE Trans Electron Devices 2017;64:1922-31.
61. Song YJ, Kim JW, Cho HE, et al. Fibertronic organic light-emitting diodes toward fully addressable, environmentally robust, wearable displays. ACS Nano 2020;14:1133-40.
62. Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science 2010;327:1603-7.
63. Sekitani T, Someya T. Stretchable, large-area organic electronics. Adv Mater 2010;22:2228-46.
64. Kang SH, Jo JW, Lee JM, et al. Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored elastic substrates on a large scale. Nat Commun 2024;15:2814.
65. Shi Y, Zhao J, Zhang B, et al. Freestanding serpentine silicon strips with ultrahigh stretchability over 300% for wearable electronics. Adv Mater 2024;36:e2313603.
66. Wang Y, Han X, Jin L, et al. Excitation threshold reduction techniques for organic semiconductor lasers: a review. Coatings 2023;13:1815.
67. Chen J, Zhang W, Wang L, Yu G. Recent research progress of organic small-molecule semiconductors with high electron mobilities. Adv Mater 2023;35:2210772.
68. Jung D, Ju H, Cho S, Lee T, Hong C, Lee J. Multilayer stretchable electronics with designs enabling a compact lateral form. npj Flex Electron 2024;8:13.
69. Park J, Kim HW, Lim S, et al. Conformal fixation strategies and bioadhesives for soft bioelectronics. Adv Funct Mater 2024;34:2313728.
70. Efstathiou S, Nurumbetov G, Ross A, Li Y, Haddleton DM. Moisture-cured solvent free silylated poly(ether-urea) pressure-sensitive adhesives (PSAs) for use as skin adhesives for application in transdermal drug delivery (TDD). Mater Adv 2024;5:3396-410.
71. Zheng Y, Wu M, Duan M, et al. Skin temperature-triggered switchable adhesive coatings for wearing comfortable epidermal electronics. Chem Eng J 2024;488:150459.
72. Fialho L, Albuquerque J, Pinho AS, et al. Exploring innovative adhesive approaches to manage medical adhesive-related skin injuries (MARSI). Int J Adhes Adhes 2024;130:103636.
73. Guo H, Zhang W, Jia Z, et al. A biodegradable supramolecular adhesive with robust instant wet adhesion for urgent hemostasis and wound repair. Adv Funct Mater 2024;34:2401529.
74. Yuan X, Kong W, Xia P, et al. Implantable wet-adhesive flexible electronics with ultrathin gelatin film. Adv Funct Mater 2024:2404824.
75. Zhou Y, Wang L, Liu Y, et al. Transparent, stretchable, self-healing, and self-adhesive ionogels for flexible multifunctional sensors and encryption systems. Chem Eng J 2024;484:149632.
76. Roslan MF, Shaffiar NM, Khairusshima MKN, Sharifah ISS. Finite element analysis on deformation of stretchable electronic interconnect substrate using polydimethylsiloxanes (PDMS). IOP Conf Ser Mater Sci Eng 2018;290:012022.
77. Shao Y, Tan X, Novitski R, et al. Uniaxial cell stretching device for live-cell imaging of mechanosensitive cellular functions. Rev Sci Instrum 2013;84:114304.
78. Hong JH, Kim S, Lee J, Yoon J, Kim S, Kim Y. 74-1: Invited paper: highly stretchable and shrinkable AMOLED for free deformation. Symp Digest Tech Papers 2023;54:1041-4.
79. Wang CL, Ho ST, Wang WT, et al. 41-3: Invited paper: high resolution stretchable micro-LED displays. Symp Digest Tech Papers 2022;53:521-3.
80. Sluka T. 42-1: Invited paper: high-resolution light-field AR at comparable computing cost to stereo 3D. Symp Digest Tech Papers 2022;53:526-7.
81. Kang J, Luo H, Tang W, et al. 71-2: Enabling processes and designs for tight-pitch micro-LED based stretchable display. Symp Digest Tech Papers 2021;52:1056-9.
82. Khang DY, Jiang H, Huang Y, Rogers JA. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006;311:208-12.
83. Dana SF, Nguyen D, Kochhar JS, Liu X, Kang L. UV-curable pressure sensitive adhesive films: effects of biocompatible plasticizers on mechanical and adhesion properties. Soft Matter 2013;9:6270-81.
84. Roy A, Manna K, Ray PG, Dhara S, Pal S. β-cyclodextrin-based ultrahigh stretchable, flexible, electro- and pressure-responsive, adhesive, transparent hydrogel as motion sensor. ACS Appl Mater Interfaces 2022;14:17065-80.
85. Mao J, Zhao C, Liu L, et al. Adhesive, transparent, stretchable, and strain-sensitive hydrogel as flexible strain sensor. Compos Commun 2021;25:100733.
86. Han GY, Park JY, Lee TH, Yi MB, Kim HJ. Highly resilient dual-crosslinked hydrogel adhesives based on a dopamine-modified crosslinker. ACS Appl Mater Interfaces 2022;14:36304-14.
87. Yi M, Lee T, Lee S, Kim J, Kim H. Topologically designed cross-linking network for stretchable and recoverable pressure-sensitive adhesives with exceptional softness. Mater Today Chem 2022;26:101141.
88. Campbell CJ, Clapper J, Behling RE, et al. P-198: optically clear adhesives enabling foldable and flexible OLED displays. Symp Digest Tech Papers 2017;48:2009-11.
89. Lee TI, Jo W, Kim W, Kim JH, Paik KW, Kim TS. Direct visualization of cross-sectional strain distribution in flexible devices. ACS Appl Mater Interfaces 2019;11:13416-22.
90. Kim W, Lee I, Yoon Kim D, et al. Controlled multiple neutral planes by low elastic modulus adhesive for flexible organic photovoltaics. Nanotechnology 2017;28:194002.
91. Park Y, Kim J, Ahn D, Yu Y, Lee W, Kwon MS. Biomass-derived optically clear adhesives for foldable displays. ChemSusChem 2024:e202301795.
92. Lee MH, Jang S, Hwang BH, Kwak T, Kim JJ, Yoon S. 53-1: The foldable display architecture technique depending on the wide temperature range and the folding curvature. Symp Digest Tech Papers 2022;53:692-5.
93. Gower MD, Shanks RA. Acrylic acid level and adhesive performance and peel master-curves of acrylic pressure-sensitive adhesives. J Polym Sci B Polym Phys 2006;44:1237-52.
94. Chang EP. Viscoelastic properties of pressure-sensitive adhesives. J Adhes 1997;60:233-48.
95. Tanaka F, Edwards SF. Viscoelastic properties of physically crosslinked networks. 1. Transient network theory. Macromolecules 1992;25:1516-23.
96. Tanaka F, Edwards S. Viscoelastic properties of physically crosslinked networks: Part 2. Dynamic mechanical moduli. J Non-Newton Fluid Mech 1992;43:273-88.
97. Eckstein A, Suhm J, Friedrich C, et al. Determination of plateau moduli and entanglement molecular weights of isotactic, syndiotactic, and atactic polypropylenes synthesized with metallocene catalysts. Macromolecules 1998;31:1335-40.
98. Dobrynin AV, Tian Y, Jacobs M, et al. Forensics of polymer networks. Nat Mater 2023;22:1394-400.
100. Lee TH, Kim JS, Lee JH, Kim HJ. Pressure-sensitive adhesives for flexible display applications. In: Vargas-Bernal R, He P, Zhang S, editors. Hybrid nanomaterials - flexible electronics materials. IntechOpen; 2019.
101. Mittal KL. The role of the interface in adhesion phenomena. Polym Eng Sci 1977;17:467-73.
102. Yuk H, Zhang T, Lin S, Parada GA, Zhao X. Tough bonding of hydrogels to diverse non-porous surfaces. Nat Mater 2016;15:190-6.
103. Krenceski MA, Johnson JF, Temin SC. Chemical and physical factors affecting performance of pressure-sensitive adhesives. J Macromol Sci Part C Polym Rev 1986;26:143-82.
104. Kinloch AJ, Williams JG. Chapter 8 - The mechanics of peel tests. Adhes Sci Eng 2002;1:273-301.
105. Czech Z. Crosslinking of pressure sensitive adhesive based on water-borne acrylate. Polym Int 2003;52:347-57.
106. Lee J, Lee T, Shim K, et al. Effect of crosslinking density on adhesion performance and flexibility properties of acrylic pressure sensitive adhesives for flexible display applications. Int J Adhes Adhes 2017;74:137-43.
107. Kinloch AJ. Adhesion and adhesives: science and technology. Springer Science & Business Media; 1987.
108. Pocius AV. Adhesion and adhesives technology: an introduction. 3rd ed. Carl Hanser Verlag GmbH & Company KG; 2012.
109. Israelachvili J. Intermolecular and surface forces. 3rd ed. Academic Press; 2011.
110. Won Y, Shin HS, Jo M, Lim YJ, Manda R, Lee SH. An electrically switchable dye-doped liquid crystal polarizer for organic light emitting-diode displays. J Mol Liquids 2021;333:115922.
111. Vaenkatesan V, Wegh R, Teunissen J, Lub J, Bastiaansen C, Broer D. Improving the brightness and daylight contrast of organic light-emitting diodes. Adv Funct Mater 2005;15:138-42.
113. Antosik AK, Bednarczyk P, Czech Z. Aging of silicone pressure-sensitive adhesives. Polym Bull 2018;75:1141-7.
115. Rudawska A, Abdel Wahab M, Müller M. Effect of ageing process on mechanical properties of adhesive tubular butt joints in aqueous environment. Int J Adhes Adhes 2020;96:102466.
116. ASTM D3632-98. Standard test method for accelerated aging of adhesive joints by the oxygen-pressure method. Available from: https://www.astm.org/d3632-98.html. [Last accessed on 30 Jul 2024].
117. ASTM D3611-06. Standard practice for accelerated aging of pressure-sensitive tapes. Available from: https://www.astm.org/d3611-06.html. [Last accessed on 30 Jul 2024].
118. Chiang C, Winscom C, Bull S, Monkman A. Mechanical modeling of flexible OLED devices. Org Electron 2009;10:1268-74.
119. Ma BS, Jo W, Kim W, Kim TS. Mechanical modeling of rollable OLED display apparatus considering spring component. J Microelect Pack Soc 2020;27:19-26.
120. Li S, Liu X, Li R, Su Y. Shear deformation dominates in the soft adhesive layers of the laminated structure of flexible electronics. Int J Solids Struct 2017;110-1:305-14.
122. Jia Y, Liu Z, Wu D, Chen J, Meng H. Mechanical simulation of foldable AMOLED panel with a module structure. Org Electron 2019;65:185-92.
123. Niu L, Ding J, Liu W. Analysis on the mechanical behavior of flexible screens. Materials 2022;15:2829.
124. Chen ZP, Li SS, Wang S, Lee BG, Yuan Z, Yu X. P-119: modeling of mechanical effects in flexible display. Symp Digest Tech Papers 2020;51:1818-21.
125. Zhang Y, Wang S, Dong F, et al. Mechanical behavior and constitutive model characterization of optically clear adhesive in flexible devices. Micromachines 2022;13:301.
126. Lee JH, Myung MH, Baek MJ, Kim H, Lee DW. Effects of monomer functionality on physical properties of 2-ethylhexyl acrylate based stretchable pressure sensitive adhesives. Polym Test 2019;76:305-11.
127. Lee JH, Park J, Myung MH, Baek M, Kim H, Lee DW. Stretchable and recoverable acrylate-based pressure sensitive adhesives with high adhesion performance, optical clarity, and metal corrosion resistance. Chem Eng J 2021;406:126800.
128. Lim D, Baek M, Kim H, Baig C, Lee DW. Carboxyethyl acrylate incorporated optically clear adhesives with outstanding adhesion strength and immediate strain recoverability for stretchable electronics. Chem Eng J 2022;437:135390.
129. Lee K, Tiu BDB, Martchenko V, et al. A modular strategy for functional pressure sensitive adhesives. ACS Appl Mater Interfaces 2021;13:3161-5.
130. Seok WC, Leem JT, Song HJ. Acrylic pressure-sensitive adhesives based on ethylene glycol acrylate for flexible display application: Highly elastic and recoverable properties. Polym Test 2022;108:107491.
131. Seok WC, Park JH, Song HJ. Effect of silane acrylate on the surface properties, adhesive performance, and rheological behavior of acrylic pressure sensitive adhesives for flexible displays. J Ind Eng Chem 2022;111:98-110.
132. Seok WC, Leem JT, Song HJ. The effect of silane acrylate containing ethylene glycol chains on the adhesive performance and viscoelastic behavior of acrylic pressure-sensitive adhesives for flexible displays. Polymers 2023;15:3601.
133. Moussa K, Decker C. Light-induced polymerization of new highly reactive acrylic monomers. J Polym Sci A Polym Chem 1993;31:2197-203.
134. Lee TY, Roper TM, Jönsson ES, Guymon CA, Hoyle CE. Influence of hydrogen bonding on photopolymerization rate of hydroxyalkyl acrylates. Macromolecules 2004;37:3659-65.
135. Vleeschouwer F, Van Speybroeck V, Waroquier M, Geerlings P, De Proft F. Electrophilicity and nucleophilicity index for radicals. Org Lett 2007;9:2721-4.
136. Taghizadeh SM, Ghasemi D. Rheological and adhesion properties of acrylic pressure-sensitive adhesives. J Appl Polymer Sci 2011;120:411-8.
137. Sanai Y, Kagami S, Kubota K. Cross-linking photopolymerization of monoacrylate initiated by benzophenone. J Polym Sci Part A Polym Chem 2018;56:1545-53.
138. Novikov V, Rössler E. Correlation between glass transition temperature and molecular mass in non-polymeric and polymer glass formers. Polymer 2013;54:6987-91.
139. Hintermeyer J, Herrmann A, Kahlau R, Goiceanu C, Rössler EA. Molecular weight dependence of glassy dynamics in linear polymers revisited. Macromolecules 2008;41:9335-44.
140. Zhang P, Zhou W, He Y, et al. Stretchable heterogeneous polymer networks of high adhesion and low hysteresis. ACS Appl Mater Interfaces 2022;14:49264-73.
141. Moon H, Jeong K, Kwak MJ, Choi SQ, Im SG. Solvent-free deposition of ultrathin copolymer films with tunable viscoelasticity for application to pressure-sensitive adhesives. ACS Appl Mater Interfaces 2018;10:32668-77.
142. Kim J, Hwang J, Baek D, Kim H, Kim Y. Characterization and flexibility properties of UV LED cured acrylic pressure-sensitive adhesives for flexible displays. J Mater Res Technol 2021;10:1176-83.
143. Kim J, Kim H, Kim Y. Flexibility properties of pressure-sensitive adhesive with different pattern of crosslinking density for electronic displays. J Mater Res Technol 2021;15:1408-15.
144. Lee J, Kim K, Kim H, Kim Y. Ultraviolet-patterned acrylic pressure-sensitive adhesives for flexible displays. Polymer 2021;237:124324.
145. Back JH, Kim JS, Kim Y, Kim HJ. Heterogeneous acrylic resins with bicontinuous nanodomains as low-modulus flexible adhesives. Small 2024:e2403497.
146. Bonnotte T, Paul S, Araque M, Wojcieszak R, Dumeignil F, Katryniok B. Dehydration of lactic acid: the state of the art. ChemBioEng Rev 2018;5:34-56.
147. Haque FM, Ishibashi JSA, Lidston CAL, et al. Defining the macromolecules of tomorrow through synergistic sustainable polymer research. Chem Rev 2022;122:6322-73.
148. Gabriel VA, Dubé MA. Toward a fully biobased pressure-sensitive adhesive. Ind Eng Chem Res 2023;62:478-88.
149. Droesbeke MA, Aksakal R, Simula A, Asua JM, Du Prez FE. Biobased acrylic pressure-sensitive adhesives. Prog Polym Sci 2021;117:101396.
150. Chen TTD, Carrodeguas LP, Sulley GS, Gregory GL, Williams CK. Bio-based and degradable block polyester pressure-sensitive adhesives. Angew Chem Int Ed Engl 2020;132:23656-61.
151. Albanese KR, Okayama Y, Morris PT, et al. Building tunable degradation into high-performance poly(acrylate) pressure-sensitive adhesives. ACS Macro Lett 2023;12:787-93.
152. Machado TO, Stubbs CJ, Chiaradia V, et al. A renewably sourced, circular photopolymer resin for additive manufacturing. Nature 2024;629:1069-74.
153. Castagnet T, Aguirre G, Asua JM, Billon L. Bioinspired enzymatic synthesis of terpenoid-based (meth)acrylic monomers: a solvent-, metal-, amino-, and halogen-free approach. ACS Sustainable Chem Eng 2020;8:7503-12.
154. Hermens JGH, Jensma A, Feringa BL. Highly efficient biobased synthesis of acrylic acid. Angew Chem Int Ed Engl 2022;61:e202112618.
155. Droesbeke MA, Du Prez FE. Sustainable synthesis of renewable terpenoid-based (meth)acrylates using the CHEM21 green metrics toolkit. ACS Sustainable Chem Eng 2019;7:11633-9.
156. Obermeier F, Hense D, Stockmann PN, Strube OI. Syntheses and polymerization of monoterpene-based (meth)acrylates: IBO(M)A as a relevant monomer for industrial applications. Green Chem 2024;26:4387-416.
157. Jarach N, Dodiuk H. Debondable, recyclable and/or biodegradable naturally-based adhesives. In: Dunky M, Mittal K, editors. Biobased adhesives. Wiley; 2023. pp. 427-61.
158. Veith C, Diot-néant F, Miller SA, Allais F. Synthesis and polymerization of bio-based acrylates: a review. Polym Chem 2020;11:7452-70.
159. Nasiri M, Saxon DJ, Reineke TM. Enhanced mechanical and adhesion properties in sustainable triblock copolymers via non-covalent interactions. Macromolecules 2018;51:2456-65.
160. Badía A, Agirre A, Barandiaran MJ, Leiza JR. Removable biobased waterborne pressure-sensitive adhesives containing mixtures of isosorbide methacrylate monomers. Biomacromolecules 2020;21:4522-31.
161. Gallagher JJ, Hillmyer MA, Reineke TM. Acrylic triblock copolymers incorporating isosorbide for pressure sensitive adhesives. ACS Sustainable Chem Eng 2016;4:3379-87.
162. Heo J, Kang T, Jang SG, et al. Improved performance of protected catecholic polysiloxanes for bioinspired wet adhesion to surface oxides. J Am Chem Soc 2012;134:20139-45.
163. Li Y, Sun XS. Synthesis and characterization of acrylic polyols and polymers from soybean oils for pressure-sensitive adhesives. RSC Adv 2015;5:44009-17.
164. Fouilloux H, Qiang W, Robert C, Placet V, Thomas CM. Multicatalytic transformation of (meth)acrylic acids: a one-pot approach to biobased poly(meth)acrylates. Angew Chem Int Ed Engl 2021;60:19374-82.
166. Abubakar UC, Bansod Y, Forster L, Spallina V, D’agostino C. Conversion of glycerol to acrylic acid: a review of strategies, recent developments and prospects. React Chem Eng 2023;8:1819-38.
168. Atkinson RL, Monaghan OR, Elsmore MT, et al. RAFT polymerisation of renewable terpene (meth)acrylates and the convergent synthesis of methacrylate-acrylate-methacrylate triblock copolymers. Polym Chem 2021;12:3177-89.
169. Zhang L, Cao Y, Wang L, Shao L, Bai Y. Polyacrylate emulsion containing IBOMA for removable pressure sensitive adhesives. J Appl Polym Sci 2016;133:42886.
170. Droesbeke MA, Simula A, Asua JM, Du Prez FE. Biosourced terpenoids for the development of sustainable acrylic pressure-sensitive adhesives via emulsion polymerisation. Green Chem 2020;22:4561-9.
171. Baek SS, Hwang SH. Preparation of biomass-based transparent pressure sensitive adhesives for optically clear adhesive and their adhesion performance. Eur Polym J 2017;92:97-104.
172. Baek SS, Jang SH, Hwang SH. Construction and adhesion performance of biomass tetrahydro-geraniol-based sustainable/transparent pressure sensitive adhesives. J Ind Eng Chem 2017;53:429-34.
173. Badía A, Santos JI, Agirre A, Barandiaran MJ, Leiza JR. UV-tunable biobased pressure-sensitive adhesives containing piperonyl methacrylate. ACS Sustainable Chem Eng 2019;7:19122-30.
174. Agirre A, Nase J, Degrandi E, Creton C, Asua JM. Improving adhesion of acrylic waterborne PSAs to low surface energy materials: introduction of stearyl acrylate. J Polym Sci A Polym Chem 2010;48:5030-9.
175. Iso T, Ninomiya T, Kagami S, Kubota K, Sanai Y. Environmentally-friendly UV-curable coatings utilizing bio-based polyester acrylates. Prog Org Coat 2023;175:107356.
176. Hub L, Koll J, Held M, Radjabian M, Abetz V. Amphiphilic block copolymers via blue-light-induced iniferter RAFT ab initio emulsion polymerization in water–alcoholic media. Macromolecules 2024;57:2273-86.
177. Lovell PA, Schork FJ. Fundamentals of emulsion polymerization. Biomacromolecules 2020;21:4396-441.
178. Noppalit S, Simula A, Billon L, Asua JM. On the nitroxide mediated polymerization of methacrylates derived from bio-sourced terpenes in miniemulsion, a step towards sustainable products. Polym Chem 2020;11:1151-60.
179. Yan Y, Wu J, Wang Y, et al. Strong and UV-responsive plant oil-based ethanol aqueous adhesives fabricated via surfactant-free RAFT-mediated emulsion polymerization. ACS Sustainable Chem Eng 2021;9:13695-702.
180. Lee Y, Kwon Y, Kim Y, et al. A water-soluble organic photocatalyst discovered for highly efficient additive-free visible-light-driven grafting of polymers from proteins at ambient and aqueous environments. Adv Mater 2022;34:e2108446.
181. Niu J, Page ZA, Dolinski ND, et al. Rapid visible light-mediated controlled aqueous polymerization with in situ monitoring. ACS Macro Lett 2017;6:1109-13.
182. Chung KY, Page ZA. Boron-methylated dipyrromethene as a green light activated type i photoinitiator for rapid radical polymerizations. J Am Chem Soc 2023;145:17912-8.
183. Tucker BS, Coughlin ML, Figg CA, Sumerlin BS. Grafting-from proteins using metal-free PET-RAFT polymerizations under mild visible-light irradiation. ACS Macro Lett 2017;6:452-7.
184. Borjigin T, Schmitt M, Giacoletto N, et al. The blue-LED-sensitive naphthoquinone-imidazolyl derivatives as type II photoinitiators of free radical photopolymerization. Adv Mater Interfaces 2023;10:2202352.
185. Lee Y, Boyer C, Kwon MS. Photocontrolled RAFT polymerization: past, present, and future. Chem Soc Rev 2023;52:3035-97.
186. Jeon W, Kwon Y, Kwon MS. Highly efficient dual photoredox/copper catalyzed atom transfer radical polymerization achieved through mechanism-driven photocatalyst design. Nat Commun 2024;15:5160.
187. Corrigan N, Yeow J, Judzewitsch P, Xu J, Boyer C. Seeing the light: advancing materials chemistry through photopolymerization. Angew Chem Int Ed Engl 2019;58:5170-89.
188. Fors BP, Hawker CJ. Control of a living radical polymerization of methacrylates by light. Angew Chem Int Ed Engl 2012;51:8850-3.
189. Singh VK, Yu C, Badgujar S, et al. Highly efficient organic photocatalysts discovered via a computer-aided-design strategy for visible-light-driven atom transfer radical polymerization. Nat Catal 2018;1:794-804.
190. Kim D, Kim H, Jeon W, et al. Ultraviolet light debondable optically clear adhesives for flexible displays through efficient visible-light curing. Adv Mater 2024;36:e2309891.
191. Song Y, He J, Zhang Y, Gilsdorf RA, Chen EYX. Recyclable cyclic bio-based acrylic polymer via pairwise monomer enchainment by a trifunctional Lewis pair. Nat Chem 2023;15:366-76.
192. Jehanno C, Alty JW, Roosen M, et al. Critical advances and future opportunities in upcycling commodity polymers. Nature 2022;603:803-14.
193. Deacy AC, Gregory GL, Sulley GS, Chen TTD, Williams CK. Sequence control from mixtures: switchable polymerization catalysis and future materials applications. J Am Chem Soc 2021;143:10021-40.
194. Liu Z, Yan F. Switchable adhesion: on-demand bonding and debonding. Adv Sci 2022;9:e2200264.
195. Wang ZH, Liu BW, Zeng FR, et al. Fully recyclable multifunctional adhesive with high durability, transparency, flame retardancy, and harsh-environment resistance. Sci Adv 2022;8:eadd8527.
196. Hwang J, Lim D, Lee G, et al. Ambient air-operated thermo-switchable adhesion of N-isopropylacrylamide-incorporated pressure sensitive adhesives. Mater Horiz 2023;10:2013-23.
197. Mulcahy KR, Kilpatrick AFR, Harper GDJ, Walton A, Abbott AP. Debondable adhesives and their use in recycling. Green Chem 2022;24:36-61.
198. Beharaj A, Ekladious I, Grinstaff MW. Poly(alkyl glycidate carbonate)s as degradable pressure-sensitive adhesives. Angew Chem 2019;131:1421-5.
199. Beharaj A, McCaslin EZ, Blessing WA, Grinstaff MW. Sustainable polycarbonate adhesives for dry and aqueous conditions with thermoresponsive properties. Nat Commun 2019;10:5478.
200. Shieh P, Zhang W, Husted KEL, et al. Cleavable comonomers enable degradable, recyclable thermoset plastics. Nature 2020;583:542-7.
201. Pesenti T, Nicolas J. 100th Anniversary of Macromolecular Science Viewpoint: degradable polymers from radical ring-opening polymerization: latest advances, new directions, and ongoing challenges. ACS Macro Lett 2020;9:1812-35.
202. Kim HJ, Jin K, Shim J, Dean W, Hillmyer MA, Ellison CJ. Sustainable triblock copolymers as tunable and degradable pressure sensitive adhesives. ACS Sustainable Chem Eng 2020;8:12036-44.
203. Bakar R, Hepburn KS, Keddie JL, Roth PJ. Degradable, ultraviolet-crosslinked pressure-sensitive adhesives made from thioester-functional acrylate copolymers. Angew Chem Int Ed Engl 2023;62:e202307009.
204. Bakar RA, Keddie JL, Roth PJ. New chemistries for degradable pressure-sensitive adhesive networks. Chempluschem 2024;89:e202400034.
205. Albanese KR, Morris PT, Read de Alaniz J, Bates CM, Hawker CJ. Controlled-radical polymerization of α-lipoic acid: a general route to degradable vinyl copolymers. J Am Chem Soc 2023;145:22728-34.
206. Korpusik AB, Adili A, Bhatt K, Anatot JE, Seidel D, Sumerlin BS. Degradation of polyacrylates by one-pot sequential dehydrodecarboxylation and ozonolysis. J Am Chem Soc 2023;145:10480-5.
207. Abel BA, Snyder RL, Coates GW. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 2021;373:783-9.
208. Bandl C, Kern W, Schlögl S. Adhesives for “debonding-on-demand”: triggered release mechanisms and typical applications. Int J Adhes Adhes 2020;99:102585.
209. Lundberg DJ, Ko K, Kilgallon LJ, Johnson JA. Defining reactivity-deconstructability relationships for copolymerizations involving cleavable comonomer additives. ACS Macro Lett 2024;13:521-7.
210. McCluskey P, Lilie F, Beysser O, Gallo A. Low temperature delamination of plastic encapsulated microcircuits. Microelectro Reliab 1998;38:1829-34.