1. Ding J, Zhao W, Jin W, Di C, Zhu D. Advanced thermoelectric materials for flexible cooling application. Adv Funct Mater 2021;31:2010695.
2. Gómez J, Ferreiro Garcia R, De Miguel Catoira A, Romero Gómez M. Magnetocaloric effect: a review of the thermodynamic cycles in magnetic refrigeration. Renew Sustain Energy Rev 2013;17:74-82.
3. Torelló A, Defay E. Electrocaloric coolers: a review. Adv Elect Mater 2022;8:2101031.
4. Zhao D, Tan G. A review of thermoelectric cooling: materials, modeling and applications. Appl Therm Eng 2014;66:15-24.
5. Goldsmid HJ, Douglas RW. The use of semiconductors in thermoelectric refrigeration. Br J Appl Phys 1954;5:386-90.
6. Wang Y, Yang L, Shi XL, et al. Flexible thermoelectric materials and generators: challenges and innovations. Adv Mater 2019;31:e1807916.
7. Reeder JT, Xie Z, Yang Q, et al. Soft, bioresorbable coolers for reversible conduction block of peripheral nerves. Science 2022;377:109-15.
8. Kishore RA, Nozariasbmarz A, Poudel B, Sanghadasa M, Priya S. Ultra-high performance wearable thermoelectric coolers with less materials. Nat Commun 2019;10:1765.
9. Zhang Q, Deng K, Wilkens L, Reith H, Nielsch K. Micro-thermoelectric devices. Nat Electron 2022;5:333-47.
10. Hong S, Gu Y, Seo JK, et al. Wearable thermoelectrics for personalized thermoregulation. Sci Adv 2019;5:eaaw0536.
11. Jin W, Liu L, Yang T, et al. Exploring Peltier effect in organic thermoelectric films. Nat Commun 2018;9:3586.
12. Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA. Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 2016;1:16050.
13. Clark J, Lanzani G. Organic photonics for communications. Nature Photon 2010;4:438-46.
14. Someya T, Bao Z, Malliaras GG. The rise of plastic bioelectronics. Nature 2016;540:379-85.
15. He J, Tritt TM. Advances in thermoelectric materials research: looking back and moving forward. Science 2017;357:eaak9997.
16. Liu J, van der Zee B, Alessandri R, et al. N-type organic thermoelectrics: demonstration of ZT > 0.3. Nat Commun 2020;11:5694.
17. Sun Y, Qiu L, Tang L, et al. Flexible n-type high-performance thermoelectric thin films of poly(nickel-ethylenetetrathiolate) prepared by an electrochemical method. Adv Mater 2016;28:3351-8.
18. Bubnova O, Khan ZU, Malti A, et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat Mater 2011;10:429-33.
19. Kim GH, Shao L, Zhang K, Pipe KP. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 2013;12:719-23.
20. Zeng YJ, Wu D, Cao XH, Zhou WX, Tang LM, Chen KQ. Nanoscale organic thermoelectric materials: measurement, theoretical models, and optimization strategies. Adv Funct Mater 2020;30:1903873.
21. Hu E, Kaynak A, Li Y. Development of a cooling fabric from conducting polymer coated fibres: proof of concept. Synth Met 2005;150:139-43.
22. Wang S, Wohlrab S, Reith H, et al. Doped organic micro-thermoelectric coolers with rapid response time. Adv Elect Mater 2022;8:2200629.
23. Cui L, Miao R, Wang K, et al. Peltier cooling in molecular junctions. Nat Nanotechnol 2018;13:122-7.
24. Wang SJ, Panhans M, Lashkov I, et al. Highly efficient modulation doping: a path toward superior organic thermoelectric devices. Sci Adv 2022;8:eabl9264.
25. Walzer K, Maennig B, Pfeiffer M, Leo K. Highly efficient organic devices based on electrically doped transport layers. Chem Rev 2007;107:1233-71.
26. Salzmann I, Heimel G, Oehzelt M, Winkler S, Koch N. Molecular electrical doping of organic semiconductors: fundamental mechanisms and emerging dopant design rules. Acc Chem Res 2016;49:370-8.
27. Yamashita Y, Tsurumi J, Ohno M, et al. Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature 2019;572:634-8.
28. Skrypnychuk V, Wetzelaer GJ, Gordiichuk PI, et al. Ultrahigh mobility in an organic semiconductor by vertical chain alignment. Adv Mater 2016;28:2359-66.
29. Sawatzki-Park M, Wang SJ, Kleemann H, Leo K. Highly ordered small molecule organic semiconductor thin-films enabling complex, high-performance multi-junction devices. Chem Rev 2023;123:8232-50.
30. Zhan S, Hong T, Qin B, et al. Realizing high-ranged thermoelectric performance in PbSnS2 crystals. Nat Commun 2022;13:5937.
31. Bounioux C, Díaz-chao P, Campoy-quiles M, et al. Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor. Energy Environ Sci 2013;6:918-25.
32. Jiang Q, Yang J, Hing P, Ye H. Recent advances, design guidelines, and prospects of flexible organic/inorganic thermoelectric composites. Mater Adv 2020;1:1038-54.
33. Blackburn JL, Ferguson AJ, Cho C, Grunlan JC. Carbon-nanotube-based thermoelectric materials and devices. Adv Mater 2018;30:1704386.
34. Kim C, Lopez DH. Energy filtering and phonon scattering effects in Bi2Te3-PEDOT:PSS composite resulting in enhanced n-type thermoelectric performance. Appl Phys Lett 2022;120:063903.
35. Borchert JW, Weitz RT, Ludwigs S, Klauk H. A critical outlook for the pursuit of lower contact resistance in organic transistors. Adv Mater 2022;34:e2104075.
36. Gao W, Lin W, Lu E. Numerical study on natural convection inside the channel between the flat-plate cover and sine-wave absorber of a cross-corrugated solar air heater. Energy Convers Manag 2000;41:145-51.
37. Yuan D, Liu W, Zhu X. Efficient and air-stable n-type doping in organic semiconductors. Chem Soc Rev 2023;52:3842-72.
38. Keum C, Murawski C, Archer E, Kwon S, Mischok A, Gather MC. A substrateless, flexible, and water-resistant organic light-emitting diode. Nat Commun 2020;11:6250.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.