REFERENCES

1. Taylor PJ, Thompson CH, Brinkworth GD. Effectiveness and acceptability of continuous glucose monitoring for type 2 diabetes management: a narrative review. J Diabetes Investig 2018;9:713-25.

2. Wang M, Song X, Song B, et al. Precisely quantified catalyst based on in situ growth of Cu2O nanoparticles on a graphene 3D network for highly sensitive glucose sensor. Sensor Actuat B Chem 2017;250:333-41.

3. Zhang C, Zhang Z, Yang Q, Chen W. Graphene-based electrochemical glucose sensors: fabrication and sensing properties. Electroanalysis 2018;30:2504-24.

4. Vashist SK. Non-invasive glucose monitoring technology in diabetes management: a review. Anal Chim Acta 2012;750:16-27.

5. Lee WC, Kim KB, Gurudatt NG, et al. Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au-Ni alloy with conductive polymer. Biosens Bioelectron 2019;130:48-54.

6. Niu X, Li X, Pan J, He Y, Qiu F, Yan Y. Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges. RSC Adv 2016;6:84893-905.

7. Xiao X, Peng S, Wang C, et al. Metal/metal oxide@carbon composites derived from bimetallic Cu/Ni-based MOF and their electrocatalytic performance for glucose sensing. J Electroanal Chem 2019;841:94-100.

8. Zhao Y, Li W, Pan L, et al. ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor. Sci Rep 2016;6:32327.

9. Huang W, Ding S, Chen Y, et al. 3D NiO hollow sphere/reduced graphene oxide composite for high-performance glucose biosensor. Sci Rep 2017;7:5220.

10. Mei LP, Song P, Feng JJ, et al. Nonenzymatic amperometric sensing of glucose using a glassy carbon electrode modified with a nanocomposite consisting of reduced graphene oxide decorated with Cu2O nanoclusters. Microchim Acta 2015;182:1701-8.

11. Sheng X, Xu T, Feng X. Rational design of photoelectrodes with rapid charge transport for photoelectrochemical applications. Adv Mater 2019;31:1805132.

12. Lin Y, Genzer J, Dickey MD. Attributes, fabrication, and applications of gallium-based liquid metal particles. Adv Sci 2020;7:2000192.

13. Yan J, Lu Y, Chen G, Yang M, Gu Z. Advances in liquid metals for biomedical applications. Chem Soc Rev 2018;47:2518-33.

14. Zhang BW, Ren L, Wang YX, Xu X, Du Y, Dou SX. Gallium-based liquid metals for lithium-ion batteries. Interdiscip Mater 2022;1:354-72.

15. Hoshyargar F, Crawford J, O’Mullane AP. Galvanic replacement of the liquid metal galinstan. J Am Chem Soc 2017;139:1464-71.

16. Ren L, Cheng N, Man X, et al. General programmable growth of hybrid core-shell nanostructures with liquid metal nanodroplets. Adv Mater 2021;33:2008024.

17. Daeneke T, Khoshmanesh K, Mahmood N, et al. Liquid metals: fundamentals and applications in chemistry. Chem Soc Rev 2018;47:4073-111.

18. Syed N, Zavabeti A, Mohiuddin M, et al. Sonication-assisted synthesis of gallium oxide suspensions featuring trap state absorption: test of photochemistry. Adv Funct Mater 2017;27:1702295.

19. Zhao H, Wang C, Liu G, et al. Efficient and stable hydrogen evolution based on earth-abundant SnSe nanocrystals. Appl Catal B Environ 2020;264:118526.

20. Alsaif MMYA, Haque F, Alkathiri T, et al. 3D visible-light-driven plasmonic oxide frameworks deviated from liquid metal nanodroplets. Adv Funct Mater 2021;31:2106397.

21. Lu W, Sun Y, Dai H, et al. Direct growth of pod-like Cu2O nanowire arrays on copper foam: highly sensitive and efficient nonenzymatic glucose and H2O2 biosensor. Sensor Actuat B Chem 2016;231:860-6.

22. He J, Jiang Y, Peng J, Li C, Yan B, Wang X. Fast synthesis of hierarchical cuprous oxide for nonenzymatic glucose biosensors with enhanced sensitivity. J Mater Sci 2016;51:9696-704.

23. Amirzadeh Z, Javadpour S, Shariat MH, Knibbe R. Non-enzymatic glucose sensor based on copper oxide and multi-wall carbon nanotubes using PEDOT:PSS matrix. Synth Met 2018;245:160-6.

24. Khedekar VV, Bhanage BM. Simple electrochemical synthesis of cuprous oxide nanoparticles and their application as a non-enzymatic glucose sensor. J Electrochem Soc 2016;163:B248.

25. Laidoudi S, Khelladi MR, Lamiri L, et al. Non-enzymatic glucose detection based on cuprous oxide thin film synthesized via electrochemical deposition. Appl Phys A 2021;127:160.

26. Neumann TV, Dickey MD. Liquid metal direct write and 3D printing: a review. Adv Mater Technol 2020;5:2000070.

27. Eaker CB, Dickey MD. Liquid metal actuation by electrical control of interfacial tension. Appl Phys Rev 2016;3:031103.

28. Ropp RC. Encyclopedia of the alkaline earth compounds. 1st ed. Elsevier Pul. Co; 2013.

29. Wang Y, Li Y, Zhang J, Zhuang J, Ren L, Du Y. Native surface oxides featured liquid metals for printable self-powered photoelectrochemical device. Front Chem 2019;7:356.

30. Ren T, Yu Z, Yu H, et al. Interfacial polarization in metal-organic framework reconstructed Cu/Pd/CuOx multi-phase heterostructures for electrocatalytic nitrate reduction to ammonia. Appl Catal B Environ 2022;318:121805.

31. Lyu Z, Zhu S, Xie M, et al. Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward C2+ products in CO2 reduction. Angew Chem Int Ed Engl 2021;60:1909-15.

32. Wang Y, Zhou W, Jia R, Yu Y, Zhang B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew Chem Int Ed Engl 2020;59:5350-4.

33. Lv J, Wu S, Tian Z, Ye Y, Liu J, Liang C. Construction of PdO-Pd interfaces assisted by laser irradiation for enhanced electrocatalytic N2 reduction reaction. J Mater Chem A 2019;7:12627-34.

34. Powell D, Compaan A, Macdonald JR, Forman RA. Raman-scattering study of ion-implantation-produced damage in Cu2O. Phys Rev B 1975;12:20.

35. Balık M, Bulut V, Erdogan IY. Optical, structural and phase transition properties of Cu2O, CuO and Cu2O/CuO: their photoelectrochemical sensor applications. Int J Hydrogen Energ 2019;44:18744-55.

36. Li Q, Xu P, Zhang B, et al. Structure-dependent electrocatalytic properties of Cu2O nanocrystals for oxygen reduction reaction. J Phys Chem C 2013;117:13872-8.

37. Lee JH, Shoeman DW, Kim SS, Csallany AS. The effect of superoxide anion in the production of seven major cholesterol oxidation products in aptoric and protic conditions. Int J Food Sci Nutr 1997;48:151-9.

38. Khaliq N, Rasheed MA, Cha G, et al. Development of non-enzymatic cholesterol bio-sensor based on TiO2 nanotubes decorated with Cu2O nanoparticles. Sensor Actuat B Chem 2020;302:127200.

39. Fang Q, Qin Y, Wang H, et al. Ultra-low content bismuth-anchored gold aerogels with plasmon property for enhanced nonenzymatic electrochemical glucose sensing. Anal Chem 2022;94:11030-7.

40. Zhang R, Ke S, Lu W, et al. Constructing a Si-CuO core-shell nanowire heterojunction photoanode for enzyme-free and highly-sensitive glucose sensing. Appl Surf Sci 2023;632:157593.

41. Gao T, Li TT, Liao X, Lin JH, Shiu BC, Lou CW. Construction of Cu2O/TiO2 heterojunction photoelectrodes for photoelectrochemical determination of glucose. J Mater Res Technol 2022;21:798-809.

42. Cory NJ, Visser E, Chamier J, Sackey J, Cummings F, Chowdhury M. Electrodeposited CuO thin film for wide linear range photoelectrochemical glucose sensing. Appl Surf Sci 2022;576:151822.

43. Zhuang X, Han C, Zhang J, Sang Z, Meng W. Cu/Cu2O heterojunctions in carbon framework for highly sensitive detection of glucose. J Electroanal Chem 2021;882:115040.

44. Cui F, Sun H, Yang X, et al. Laser-induced graphene (LIG)-based Au@CuO/V2CTx MXene non-enzymatic electrochemical sensors for the urine glucose test. Chem Eng J 2023;457:141303.

45. Li M, Fang L, Zhou H, et al. Three-dimensional porous MXene/NiCo-LDH composite for high performance non-enzymatic glucose sensor. Appl Surf Sci 2019;495:143554.

46. Gopal TS, Jeong SK, Alrebdi TA, et al. MXene-based composite electrodes for efficient electrochemical sensing of glucose by non-enzymatic method. Mater Today Chem 2022;24:100891.

47. Li QF, Chen X, Wang H, Liu M, Peng HL. Pt/MXene-based flexible wearable non-enzymatic electrochemical sensor for continuous glucose detection in sweat. ACS Appl Mater Interfaces 2023;15:13290-8.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/