REFERENCES
1. Sun X, Zhang F, Zhang L, et al. Enhanced electromechanical conversion via in situ grown CsPbBr3 nanoparticle/poly(vinylidene fluoride) fiber composites for physiological signal monitoring. Soft Sci 2022;2:1.
2. Park C, Kim MS, Kim HH, et al. Stretchable conductive nanocomposites and their applications in wearable devices. Appl Phys Rev 2022;9:021312.
3. Kim JH, Lee SE, Kim BH. Applications of flexible and stretchable three-dimensional structures for soft electronics. Soft Sci 2023;3:16.
4. Wang X, Qi L, Yang H, Rao Y, Chen H. Stretchable synaptic transistors based on the field effect for flexible neuromorphic electronics. Soft Sci 2023;3:15.
5. Nie B, Li X, Wang C, et al. Flexible double-sided light-emitting devices based on transparent embedded interdigital electrodes. ACS Appl Mater Interfaces 2020;12:43892-900.
6. Chen W, Grouquist D, Roark J. Voltage tunable electroluminescence of CdTe Nanoparticle light-emitting diodes. J Nanasci Nanotechnol 2002;2:47-53.
7. Ma L, Zou X, Bui B, Chen W, Song KH, Solberg T. X-ray excited ZnS:Cu,Co afterglow nanoparticles for photodynamic activation. Appl Phys Lett 2014;105:013702.
8. Shi Y, Jiang S, Zhou K, et al. Facile preparation of ZnS/g-C3N4 nanohybrids for enhanced optical properties. RSC Adv 2014;4:2609-13.
9. Ma L, Jiang K, Liu X, Chen W. A violet emission in ZnS:Mn,Eu: luminescence and applications for radiation detection. J Appl Phys 2014;115:103104.
10. Hossu M, Schaeffer RO, Ma L, et al. On the luminescence enhancement of Mn2+ by co-doping of Eu2+ in ZnS:Mn,Eu. Opt Mater 2013;35:1513-9.
11. Qu H, Cao L, Su G, Liu W. Effect of inorganic shells on luminescence properties of ZnS:Ag nanoparticles. J Mater Sci 2013;48:4952-61.
12. Ma L, Chen W. Enhancement of afterglow in ZnS:Cu,Co water-soluble nanoparticles by aging. J Phys Chem C 2011;115:8940-4.
13. Ma L, Chen W. ZnS:Cu,Co water soluble afterglow nanoparticles: synthesis, luminescence and potential applications. Nanotechnology 2010;21:385604.
14. Ma L, Chen W. Luminescence enhancement and quenching in ZnS:Mn by Au nanoparticles. J Appl Phys 2010;107:123513.
15. Chen W, Joly AG, Zhang JZ. Up-conversion luminescence of Mn2+ in ZnS:Mn2+ nanoparticles. Phys Rev B 2001;64:412021.
16. Chen W, Joly AG, Malm JO, Bovin JO. Upconversion luminescence of Eu3+ and Mn2+ in ZnS:Mn2+,Eu3+ codoped nanoparticles. J Appl Phys 2004;95:667-72.
17. Chen W, Malm JO, Zwiller V, et al. Energy structure and fluorescence of Eu2+ in ZnS:Eu nanoparticles. Phys Rev B 2000;61:11021.
18. Chen W. Nanophase luminescence particulate material. US Patent; 2006. Available from: https://www.freepatentsonline.com/7067072.html. [Last accessed on 7 Dec 2023]
19. Mann SE, Schooneveld EM, Rhodes NJ, Liu D, Sykora GJ. Timing properties of radioluminescence in nanoparticle ZnS:Ag scintillators. Opt Mater 2023;17:100226.
20. Dai L, Torche A, Strelow C, et al. Role of magnetic coupling in photoluminescence kinetics of Mn2+-doped ZnS nanoplatelets. ACS Appl Mater Interfaces 2022;14:18806-15.
21. Jian W, Zhuang J, Zhang D, Dai J, Yang W, Bai Y. Synthesis of highly luminescent and photostable ZnS:Ag nanocrystals under microwave irradiation. Mater Chem Phys 2006;99:494-7.
22. Ollinger M, Craciun V, Singh RK. Nanoencapsulation of ZnS:Ag particulates with indium tin oxide for field emission displays. Appl Phys Lett 2002;80:1927-9.
23. Hao E, Sun Y, Yang B, Zhang X, Liu J, Shen J. Synthesis and photophysical properties of Zns colloidal particles doped with silver. J Colloid Interf Sci 1998;204:369-73.
24. Chen W, Aguekian VF, Vassiliev N, Serov AY, Filosofov NG. New observations on the luminescence decay lifetime of Mn2+ in ZnS:Mn2+ nanoparticles. J Chem Phys 2005;123:1247071.
25. Olano EM, Grant CD, Norman TJ, Castner EW, Zhang JZ. Photoluminescence decay dynamics and mechanism of energy transfer in undoped and Mn2+ doped ZnSe nanoparticles. J Nanosci Nanotechnol 2005;5:1492-7.
26. Sapra S, Prakash A, Ghangrekar A, Periasamy N, Sarma DD. Emission properties of manganese-doped ZnS nanocrystals. J Phys Chem B 2005;109:1663-8.
27. Shimizu KT, Woo WK, Fisher BR, Eisler HJ, Bawendi MG. Surface-enhanced emission from single semiconductor nanocrystals. Phys Rev Lett 2022;89:117401.
28. Bol AA, Meijerink A. Doped semiconductor nanoparticles - a new class of luminescent materials? J Lumin 2000;87-9:315-8.
29. Suyver JF, Wuister SF, Kelly JJ, Meijerink A. Synthesis and photoluminescence of nanocrystalline ZnS:Mn2+. Nano Lett 2001;1:429-33.
30. Chen W, Westcott SL, Zhang J. Dose dependence of x-ray luminescence from CaF2: Eu2+, Mn2+ phosphors. Appl Phys Lett 2007;91:211103.
31. Smith BA, Zhang JZ, Joly A, Liu J. Luminescence decay kinetics of Mn2+-doped ZnS nanoclusters grown in reverse micelles. Phys Rev B 2021;62.
32. Murase N, Jagannathan R, Kanematsu Y, et al. Fluorescence and EPR characteristics of Mn2+-doped ZnS nanocrystals prepared by aqueous colloidal method. J Phys Chem B 1999;103:754-60.
33. Chen W, Su F, Li G, Joly AG, Malm JO, Bovin JO. Temperature and pressure dependences of the Mn2+ and donor-acceptor emissions in ZnS:Mn2+ nanoparticles. J Appl Phys 2002;92:1950-5.
34. Su FH, Ma BS, Fang ZL, Ding K, Li GH, Chen W. Temperature behaviour of the orange and blue emissions in ZnS:Mn nanoparticles. J Phys Condens Matter 2002;14:12657.
35. Yu JH, Kim J, Hyeon T, Yang J. Facile synthesis of manganese (II)-doped ZnSe nanocrystals with controlled dimensionality. J Chem Phys 2019;151:244701.
36. Chen W. Doped nanomaterials and nanodevices. Available from: http://www.aspbs.com/doped.htm. [Last accessed on 7 Dec 2023].