REFERENCES

1. Ma B, Xu C, Chi J, Chen J, Zhao C, Liu H. A versatile approach for direct patterning of liquid metal using magnetic field. Adv Funct Mater 2019;29:1901370.

2. Zhou X, Zhang Y, Yang J, Li J, Luo S, Wei D. Flexible and highly sensitive pressure sensors based on microstructured carbon nanowalls electrodes. Nanomaterials 2019;9:496.

3. Jiang Y, Liu Z, Matsuhisa N, et al. Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors. Adv Mater 2018;30:e1706589.

4. Li H, Xu Y, Li X, et al. Epidermal inorganic optoelectronics for blood oxygen measurement. Adv Healthc Mater 2017;6:1601013.

5. Jiao B. Anti-motion interference wearable device for monitoring blood oxygen saturation based on sliding window algorithm. IEEE Access 2020;8:124675-87.

6. Liu Z, Qi D, Hu G, et al. Surface strain redistribution on structured microfibers to enhance sensitivity of fiber-shaped stretchable strain sensors. Adv Mater 2018;30:1704229.

7. Liao X, Zhang Z, Kang Z, Gao F, Liao Q, Zhang Y. Ultrasensitive and stretchable resistive strain sensors designed for wearable electronics. Mater Horiz 2017;4:502-10.

8. Zhang M, Wang C, Wang H, Jian M, Hao X, Zhang Y. Carbonized cotton fabric for high-performance wearable strain sensors. Adv Funct Mater 2017;27:1604795.

9. Maier D, Laubender E, Basavanna A, et al. Toward continuous monitoring of breath biochemistry: a paper-based wearable sensor for real-time hydrogen peroxide measurement in simulated breath. ACS Sens 2019;4:2945-51.

10. Veeralingam S, Khandelwal S, Sha R, Badhulika S. Direct growth of FeS2 on paper: a flexible, multifunctional platform for ultra-low cost, low power memristor and wearable non-contact breath sensor for activity detection. Mat Sci Semicon Proc 2020;108:104910.

11. Liu Z, Wang H, Huang P, et al. Highly stable and stretchable conductive films through thermal-radiation-assisted metal encapsulation. Adv Mater 2019;31:1901360.

12. Jeong YR, Lee G, Park H, Ha JS. Stretchable, skin-attachable electronics with integrated energy storage devices for biosignal monitoring. Acc Chem Res 2019;52:91-9.

13. Wei C, Tan L, Tao Y, et al. Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries in commercial carbonate-based electrolyte. Energy Stor Mater 2021;34:12-21.

14. Wei C, Tan L, Zhang Y, et al. Highly reversible Mg metal anodes enabled by interfacial liquid metal engineering for high-energy Mg-S batteries. Energy Stor Mater 2022;48:447-57.

15. Dickey MD. Stretchable and soft electronics using liquid metals. Adv Mater 2017;29:1606425.

16. Zhu S, So J, Mays R, et al. Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv Funct Mater 2013;23:2308-14.

17. Dickey MD, Chiechi RC, Larsen RJ, Weiss EA, Weitz DA, Whitesides GM. Eutectic Gallium-Indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv Funct Mater 2008;18:1097-104.

18. Yang X, Tan S, Liu J. Numerical investigation of the phase change process of low melting point metal. Int J Heat Mass Transf 2016;100:899-907.

19. Liu S, Sweatman K, McDonald S, Nogita K. Ga-based alloys in microelectronic interconnects: a review. Materials 2018;11:1384.

20. Zhang M, Li G, Huang L, et al. Versatile fabrication of liquid metal nano-ink based flexible electronic devices. Appl Mater Today 2021;22:100903.

21. Sun X, Cui B, Yuan B, et al. Liquid metal microparticles phase change medicated mechanical destruction for enhanced tumor cryoablation and dual-mode imaging. Adv Funct Mater 2020;30:2003359.

22. Gao Q, Li H, Zhang J, Xie Z, Zhang J, Wang L. Microchannel structural design for a room-temperature liquid metal based super-stretchable sensor. Sci Rep 2019;9:5908.

23. Gao Y, Ota H, Schaler EW, et al. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring. Adv Mater 2017;29:1701985.

24. Chang H, Guo R, Sun Z, et al. Direct writing and repairable paper flexible electronics using nickel-liquid metal ink. Adv Mater Interfaces 2018;5:1800571.

25. Kim S, Oh J, Jeong D, Bae J. Direct wiring of eutectic gallium-indium to a metal electrode for soft sensor systems. ACS Appl Mater Interfaces 2019;11:20557-65.

26. Yoon Y, Kim S, Kim D, Kauh SK, Lee J. Four degrees-of-freedom direct writing of liquid metal patterns on uneven surfaces. Adv Mater Technol 2019;4:1800379.

27. Guo C, Yu Y, Liu J. Rapidly patterning conductive components on skin substrates as physiological testing devices via liquid metal spraying and pre-designed mask. J Mater Chem B 2014;2:5739-45.

28. Plevachuk Y, Sklyarchuk V, Shevchenko N, Eckert S. Electrophysical and structure-sensitive properties of liquid Ga-In alloys. Int J Mater Res 2015;106:66-71.

29. Plevachuk Y, Sklyarchuk V, Eckert S, Gerbeth G, Novakovic R. Thermophysical properties of the liquid Ga-In-Sn eutectic alloy. J Chem Eng Data 2014;59:757-63.

30. Lu Y, Hu Q, Lin Y, et al. Transformable liquid-metal nanomedicine. Nat Commun 2015;6:10066.

31. Cicco AD, Filipponi A. Local correlations in liquid and supercooled gallium probed by X-ray absorption spectroscopy. Europhys Lett 1994;27:407-12.

32. Tang S, Mitchell DR, Zhao Q, et al. Phase separation in liquid metal nanoparticles. Matter 2019;1:192-204.

33. Koster JN. Directional solidification and melting of eutectic GaIn. Cryst Res Technol 1999;34:1129-40. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1521-4079(199911)34:9%3C1129::AID-CRAT1129%3E3.0.CO;2-P. [Last accessed on 24 Aug 2023]

34. Chitambar CR. Medical applications and toxicities of gallium compounds. Int J Environ Res Public Health 2010;7:2337-61.

35. White SJO, Shine JP. Exposure potential and health impacts of indium and gallium, metals critical to emerging electronics and energy technologies. Curr Environ Health Rep 2016;3:459-67.

36. Li J, Guo C, Wang Z, Gao K, Shi X, Liu J. Electrical stimulation towards melanoma therapy via liquid metal printed electronics on skin. Clin Transl Med 2016;5:21.

37. Fan L, Duan M, Xie Z, et al. Injectable and radiopaque liquid metal/calcium alginate hydrogels for endovascular embolization and tumor embolotherapy. Small 2019;16:1903421.

38. Hallfors N, Khan A, Dickey MD, Taylor AM. Integration of pre-aligned liquid metal electrodes for neural stimulation within a user-friendly microfluidic platform. Lab Chip 2013;13:522-6.

39. Zhang M, Yao S, Rao W, Liu J. Transformable soft liquid metal micro/nanomaterials. Mate Sci Eng R Rep 2019;138:1-35.

40. Domingo JL, Corbella J. A review of the health hazards from gallium exposure. Trace Elem Med 1991;8:56-64. Available from: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5304637. [Last accessed on 24 Aug 2023].

41. Liu S, Sun X, Kemme N, et al. Can liquid metal flow in microchannels made of its own oxide skin? Microfluid Nanofluid 2016;20:3.

42. Regan MJ, Tostmann H, Pershan PS, et al. X-ray study of the oxidation of liquid-gallium surfaces. Phys Rev B 1997;55:10786-90.

43. Cademartiri L, Thuo MM, Nijhuis CA, et al. Electrical resistance of AgTS-S(CH2)n-1CH3//Ga2O3/EGaIn tunneling junctions. J Phys Chem C 2012;116:10848-60.

44. Dickey MD. Emerging applications of liquid metals featuring surface oxides. ACS Appl Mater Interfaces 2014;6:18369-79.

45. Zhang Q, Gao Y, Liu J. Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics. Appl Phys A 2014;116:1091-7.

46. Gao Y, Li H, Liu J. Direct writing of flexible electronics through room temperature liquid metal ink. PLoS One 2012;7:e45485.

47. Zheng Y, He ZZ, Yang J, Liu J. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Sci Rep 2014;4:4588.

48. Tang L, Cheng S, Zhang L, et al. Printable metal-polymer conductors for highly stretchable bio-devices. iScience 2018;4:302-11.

49. Boley JW, White EL, Kramer RK. Mechanically sintered gallium-indium nanoparticles. Adv Mater 2015;27:2355-60.

50. Ren L, Zhuang J, Casillas G, et al. Nanodroplets for stretchable superconducting circuits. Adv Funct Mater 2016;26:8111-8.

51. Li X, Li M, Zong L, et al. Liquid metal droplets wrapped with polysaccharide microgel as biocompatible aqueous ink for flexible conductive devices. Adv Funct Mater 2018;28:1804197.

52. Li H, Qiao R, Davis TP, Tang SY. Biomedical applications of liquid metal nanoparticles: a critical review. Biosensors 2020;10:196.

53. Tang S, Qiao R. Liquid metal particles and polymers: a soft-soft system with exciting properties. Acc Mater Res 2021;2:966-78.

54. Lin Y, Cooper C, Wang M, Adams JJ, Genzer J, Dickey MD. Handwritten, soft circuit boards and antennas using liquid metal nanoparticles. Small 2015;11:6397-403.

55. Liu S, Yuen MC, White EL, et al. Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible electronics. ACS Appl Mater Interfaces 2018;10:28232-41.

56. Deng B, Cheng GJ. Pulsed laser modulated shock transition from liquid metal nanoparticles to mechanically and thermally robust solid-liquid patterns. Adv Mater 2019;31:e1807811.

57. Li X, Li M, Xu J, You J, Yang Z, Li C. Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation. Nat Commun 2019;10:3514.

58. Bartlett MD, Kazem N, Powell-Palm MJ, et al. High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc Natl Acad Sci U S A 2017;114:2143-8.

59. Fassler A, Majidi C. Liquid-phase metal inclusions for a conductive polymer composite. Adv Mater 2015;27:1928-32.

60. Markvicka EJ, Bartlett MD, Huang X, Majidi C. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat Mater 2018;17:618-24.

61. Ford MJ, Patel DK, Pan C, Bergbreiter S, Majidi C. Controlled assembly of liquid metal inclusions as a general approach for multifunctional composites. Adv Mater 2020;32:e2002929.

62. Tang L, Mou L, Zhang W, Jiang X. Large-scale fabrication of highly elastic conductors on a broad range of surfaces. ACS Appl Mater Interfaces 2019;11:7138-47.

63. Wang H, Yao Y, He Z, et al. A highly stretchable liquid metal polymer as reversible transitional insulator and conductor. Adv Mater 2019;31:e1901337.

64. Yun G, Tang S, Zhao Q, et al. Liquid metal composites with anisotropic and unconventional piezoconductivity. Matter 2020;3:824-41.

65. Yun G, Tang SY, Sun S, et al. Liquid metal-filled magnetorheological elastomer with positive piezoconductivity. Nat Commun 2019;10:1300.

66. Bartlett MD, Fassler A, Kazem N, Markvicka EJ, Mandal P, Majidi C. Liquid metals: stretchable, high-k dielectric elastomers through liquid-metal inclusions (Adv. Mater. 19/2016). Adv Mater 2016;28:3791.

67. Kazem N, Bartlett MD, Majidi C. Extreme toughening of soft materials with liquid metal. Adv Mater 2018;30:e1706594.

68. Pan C, Markvicka EJ, Malakooti MH, et al. A liquid-metal-elastomer nanocomposite for stretchable dielectric materials. Adv Mater 2019;31:1900663.

69. Kazem N, Hellebrekers T, Majidi C. Soft multifunctional composites and emulsions with liquid metals. Adv Mater 2017;29:1605985.

70. Chen S, Wang H, Zhao R, Rao W, Liu J. Liquid metal composites. Matter 2020;2:1446-80.

71. Chen X, Wan H, Guo R, et al. A double-layered liquid metal-based electrochemical sensing system on fabric as a wearable detector for glucose in sweat. Microsyst Nanoeng 2022;8:48.

72. Lin R, Kim HJ, Achavananthadith S, et al. Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nat Commun 2022;13:2190.

73. Lee GH, Woo H, Yoon C, et al. A personalized electronic tattoo for healthcare realized by on-the-spot assembly of an intrinsically conductive and durable liquid-metal composite (Adv. Mater. 32/2022). Adv Mater 2022;34:2270236.

74. Yang Y, Han J, Huang J, et al. Stretchable energy-harvesting tactile interactive interface with liquid-metal-nanoparticle-based electrodes. Adv Funct Mater 2020;30:1909652.

75. Port A, Luechinger R, Albisetti L, et al. Detector clothes for MRI: a wearable array receiver based on liquid metal in elastic tubes. Sci Rep 2020;10:8844.

76. Gu L, Poddar S, Lin Y, et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 2020;581:278-82.

77. Khondoker MAH, Ostashek A, Sameoto D. Direct 3D printing of stretchable circuits via liquid metal co-extrusion within thermoplastic filaments. Adv Eng Mater 2019;21:1900060.

78. Teng L, Ye S, Handschuh-wang S, Zhou X, Gan T, Zhou X. Liquid metal-based transient circuits for flexible and recyclable electronics. Adv Funct Mater 2019;29:1808739.

79. Chen Y, Liu Y, Ren J, et al. Conformable core-shell fiber tactile sensor by continuous tubular deposition modeling with water-based sacrificial coaxial writing. Mater Des 2020;190:108567.

80. Guo R, Tang J, Dong S, et al. One-step liquid metal transfer printing: toward fabrication of flexible electronics on wide range of substrates. Adv Mater Technol 2018;3:1800265.

81. Park TH, Kim J, Seo S. Facile and rapid method for fabricating liquid metal electrodes with highly precise patterns via one-step coating. Adv Funct Mater 2020;30:2003694.

82. Kim MG, Brown DK, Brand O. Nanofabrication for all-soft and high-density electronic devices based on liquid metal. Nat Commun 2020;11:1002.

83. Abbasi R, Mayyas M, Ghasemian MB, et al. Photolithography-enabled direct patterning of liquid metals. J Mater Chem C 2020;8:7805-11.

84. Ozutemiz KB, Wissman J, Ozdoganlar OB, Majidi C. EGaIn-metal interfacing for liquid metal circuitry and microelectronics integration. Adv Mater Interfaces 2018;5:1701596.

85. Xu J, Guo H, Ding H, et al. Printable and recyclable conductive ink based on a liquid metal with excellent surface wettability for flexible electronics. ACS Appl Mater Interfaces 2021;13:7443-52.

86. Silva CA, lv J, Yin L, et al. Liquid metal based island-bridge architectures for all printed stretchable electrochemical devices. Adv Funct Mater 2020;30:2002041.

87. Zhou L, Fu J, Gao Q, Zhao P, He Y. All-printed flexible and stretchable electronics with pressing or freezing activatable liquid-metal-silicone inks. Adv Funct Mater 2020;30:1906683.

88. Guo R, Wang H, Sun X, et al. Semiliquid metal enabled highly conductive wearable electronics for smart fabrics. ACS Appl Mater Interfaces 2019;11:30019-27.

89. Guo R, Cui B, Zhao X, et al. Cu-EGaIn enabled stretchable e-skin for interactive electronics and CT assistant localization. Mater Horiz 2020;7:1845-53.

90. Wang J, Cai G, Li S, Gao D, Xiong J, Lee PS. Printable superelastic conductors with extreme stretchability and robust cycling endurance enabled by liquid-metal particles. Adv Mater 2018;30:e1706157.

91. Guo R, Wang X, Chang H, et al. Ni-GaIn amalgams enabled rapid and customizable fabrication of wearable and wireless healthcare electronics. Adv Eng Mater 2018;20:1800054.

92. Dong C, Leber A, Das Gupta T, et al. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat Commun 2020;11:3537.

93. Zhang X, Ai J, Zou R, Su B. Compressible and stretchable magnetoelectric sensors based on liquid metals for highly sensitive, self-powered respiratory monitoring. ACS Appl Mater Interfaces 2021;13:15727-37.

94. Feng B, Jiang X, Zou G, et al. Nacre-inspired, liquid metal-based ultrasensitive electronic skin by spatially regulated cracking strategy. Adv Funct Mater 2021;31:2102359.

95. Mengüç Y, Park Y, Pei H, et al. Wearable soft sensing suit for human gait measurement. Int J Rob Res 2014;33:1748-64.

96. Do TN, Phan H, Nguyen T, Visell Y. Miniature soft electromagnetic actuators for robotic applications. Adv Funct Mater 2018;28:1800244.

97. Xu C, Ma B, Yuan S, Zhao C, Liu H. High-resolution patterning of liquid metal on hydrogel for flexible, stretchable, and self-healing electronics. Adv Electron Mater 2020;6:1900721.

98. Wissman JP, Sampath K, Freeman SE, Rohde CA. Capacitive bio-inspired flow sensing cupula. Sensors 2019;19:2639.

99. Zhang L, Gao M, Wang R, Deng Z, Gui L. Stretchable pressure sensor with leakage-free liquid-metal electrodes. Sensors 2019;19:1316.

100. Won D, Baek S, Kim H, Kim J. Arrayed-type touch sensor using micro liquid metal droplets with large dynamic range and high sensitivity. Sens Actuator A Phys 2015;235:151-7.

101. Won D, Baek S, Huh M, Kim H, Lee S, Kim J. Robust capacitive touch sensor using liquid metal droplets with large dynamic range. Sensor Actuat A Phys 2017;259:105-11.

102. Yeo JC, Kenry, Yu J, Loh KP, Wang Z, Lim CT. Triple-state liquid-based microfluidic tactile sensor with high flexibility, durability, and sensitivity. ACS Sens 2016;1:543-51.

103. Kim K, Choi J, Jeong Y, et al. Wearable sensors: highly sensitive and wearable liquid metal-based pressure sensor for health monitoring applications: integration of a 3D-printed microbump array with the microchannel. Adv Healthc Mater 2019;8:1900986.

104. Yeo JC, Yu J, Koh ZM, Wang Z, Lim CT. Wearable tactile sensor based on flexible microfluidics. Lab Chip 2016;16:3244-50.

105. Jeong YR, Kim J, Xie Z, et al. A skin-attachable, stretchable integrated system based on liquid GaInSn for wireless human motion monitoring with multi-site sensing capabilities. NPG Asia Mater 2017;9:e443.

106. Park Y, Majidi C, Kramer R, Bérard P, Wood RJ. Hyperelastic pressure sensing with a liquid-embedded elastomer. J Micromech Microeng 2010;20:125029.

107. Zhang M, Wang X, Huang Z, Rao W. Liquid metal based flexible and implantable biosensors. Biosensors 2020;10:170.

108. Tepáyotl-ramírez D, Lu T, Park Y, Majidi C. Collapse of triangular channels in a soft elastomer. Appl Phys Lett 2013;102:044102.

109. Nan K, Babaee S, Chan WW, et al. Low-cost gastrointestinal manometry via silicone-liquid-metal pressure transducers resembling a quipu. Nat Biomed Eng 2022;6:1092-104.

110. Zhu M, Wang Y, Lou M, Yu J, Li Z, Ding B. Bioinspired transparent and antibacterial electronic skin for sensitive tactile sensing. Nano Energy 2021;81:105669.

111. Lin X, Mao Y, Li P, et al. Ultra-conformable ionic skin with multi-modal sensing, broad-spectrum antimicrobial and regenerative capabilities for smart and expedited wound care. Adv Sci 2021;8:2004627.

112. Jiang C, Gao K, Zhao N, et al. A wearable braille recognition system based on high density tactile sensors. In: 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS); 2020 Jan 18-22; Vancouver, Canada; IEEE; 2020. p. 28-31.

113. Leber A, Dong C, Chandran R, Das Gupta T, Bartolomei N, Sorin F. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nat Electron 2020;3:316-26.

114. Kim S, Oh J, Jeong D, Park W, Bae J. Consistent and reproducible direct ink writing of eutectic gallium-indium for high-quality soft sensors. Soft Robot 2018;5:601-12.

115. Wu Y, Zhen R, Liu H, et al. Liquid metal fiber composed of a tubular channel as a high-performance strain sensor. J Mater Chem C 2017;5:12483-91.

116. Lu T, Wissman J, Ruthika, Majidi C. Soft anisotropic conductors as electric vias for Ga-based liquid metal circuits. ACS Appl Mater Interfaces 2015;7:26923-9.

117. So J, Thelen J, Qusba A, Hayes GJ, Lazzi G, Dickey MD. Reversibly deformable and mechanically tunable fluidic antennas. Adv Funct Mater 2009;19:3632-7.

118. Tang L, Shang J, Jiang X. Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci Adv 2021;7:eabe3778.

119. Kramer RK, Majidi C, Sahai R, Wood RJ. Soft curvature sensors for joint angle proprioception. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2011 Sep 25-30; San Francisco, CA, USA. IEEE; 2011.

120. Li G, Zhang M, Liu S, et al. Three-dimensional flexible electronics using solidified liquid metal with regulated plasticity. Nat Electron 2023;6:154-63.

121. Uchida K, Takahashi S, Harii K, et al. Observation of the spin Seebeck effect. Nature 2008;455:778-81.

122. Adachi H, Uchida K, Saitoh E, Maekawa S. Theory of the spin Seebeck effect. Rep Prog Phys 2013;76:036501.

123. Li H, Yang Y, Liu J. Printable tiny thermocouple by liquid metal gallium and its matching metal. Appl Phys Lett 2012;101:073511.

124. Wang Q, Gao M, Zhang L, Deng Z, Gui L. A handy flexible micro-thermocouple using low-melting-point metal alloys. Sensors 2019;19:314.

125. Yu Y, Zhang J, Liu J. Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit. PLoS One 2013;8:e58771.

126. Guo R, Sun X, Yao S, et al. Semi-liquid-metal-(Ni-EGaIn)-based ultraconformable electronic tattoo. Adv Mater Technol 2019;4:1900183.

127. Timosina V, Cole T, Lu H, et al. A non-newtonian liquid metal enabled enhanced electrography. Biosens Bioelectron 2023;235:115414.

128. Ding L, Hang C, Cheng S, et al. A soft, conductive external stent inhibits intimal hyperplasia in vein grafts by electroporation and mechanical restriction. ACS Nano 2020;14:16770-80.

129. Cheng S, Hang C, Ding L, et al. Electronic blood vessel. Matter 2020;3:1664-84.

130. Liu F, Yu Y, Yi L, Liu J. Liquid metal as reconnection agent for peripheral nerve injury. Science Bulletin 2016;61:939-47.

131. Dong R, Wang L, Hang C, et al. Printed stretchable liquid metal electrode arrays for in vivo neural recording. Small 2021;17:e2006612.

132. Wen X, Wang B, Huang S, et al. Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for deep-brain chemical sensing and agent delivery. Biosens Bioelectron 2019;131:37-45.

133. Lim T, Kim M, Akbarian A, Kim J, Tresco PA, Zhang H. Conductive polymer enabled biostable liquid metal electrodes for bioelectronic applications. Adv Healthc Mater 2022;11:e2102382.

134. Wang S, Nie Y, Zhu H, et al. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci Adv 2022;8:eabl5511.

135. Li G, Ma X, Xu Z, et al. A crack compensation strategy for highly stretchable conductors based on liquid metal inclusions. iScience 2022;25:105495.

136. Schedle A, Samorapoompichit P, Rausch-Fan XH, et al. Response of L-929 fibroblasts, human gingival fibroblasts, and human tissue mast cells to various metal cations. J Dent Res 1995;74:1513-20.

137. Kim JH, Kim S, So JH, Kim K, Koo HJ. Cytotoxicity of gallium-indium liquid metal in an aqueous environment. ACS Appl Mater Interfaces 2018;10:17448-54.

138. Zhang C, Yang B, Biazik JM, et al. Gallium nanodroplets are anti-inflammatory without interfering with iron homeostasis. ACS Nano 2022;16:8891-903.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/