REFERENCES
1. Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science 2010;327:1603-7.
2. Shim H, Sim K, Wang B, et al. Elastic integrated electronics based on a stretchable n-type elastomer-semiconductor-elastomer stack. Nat Electron 2023;6:349-59.
3. Sun X, Wang X, Yuan B, Liu J. Liquid metal-enabled cybernetic electronics. Mater Today Phys 2020;14:100245.
4. Zhang M, Wang X, Huang Z, Rao W. Liquid metal based flexible and implantable biosensors. Biosensors 2020;10:170.
5. Heng W, Solomon S, Gao W. Flexible electronics and devices as human-machine interfaces for medical robotics. Adv Mater 2022;34:e2107902.
6. Qu J, Pan H, Sun Y, Zhang H. Multitasking device regulated by the gravity field: broadband anapole-excited absorber and linear polarization converter. Annalen der Physik 2022;534:2200175.
7. Wu F, Shi P, Yi Z, Li H, Yi Y. Ultra-broadband solar absorber and high-efficiency thermal emitter from UV to mid-infrared spectrum. Micromachines 2023;14:985.
8. Matsuhisa N, Chen X, Bao Z, Someya T. Materials and structural designs of stretchable conductors. Chem Soc Rev 2019;48:2946-66.
9. Jiang Y, Wang Y, Mishra YK, Adelung R, Yang Y. Stretchable CNTs-Ecoflex composite as variable-transmittance skin for ultrasensitive strain sensing. Adv Mater Technol 2018;3:1800248.
10. Kim DC, Shim HJ, Lee W, Koo JH, Kim DH. Material-based approaches for the fabrication of stretchable electronics. Adv Mater 2020;32:e1902743.
11. Larmagnac A, Eggenberger S, Janossy H, Vörös J. Stretchable electronics based on Ag-PDMS composites. Sci Rep 2014;4:7254.
13. Lee P, Lee J, Lee H, et al. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater 2012;24:3326-32.
14. Kim Y, Zhu J, Yeom B, et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 2013;500:59-63.
15. Benli S, Yilmazer Ü, Pekel F, Özkar S. Effect of fillers on thermal and mechanical properties of polyurethane elastomer. J Appl Polym Sci 1998;68:1057-65. Available from: https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-4628(19980516)68:7%3C1057::AID-APP3%3E3.0.CO;2-E. [Last accessed on 13 Oct 2023]
16. Boley JW, White EL, Kramer RK. Mechanically sintered gallium-indium nanoparticles. Adv Mater 2015;27:2355-60.
18. Khoshmanesh K, Tang SY, Zhu JY, et al. Liquid metal enabled microfluidics. Lab Chip 2017;17:974-93.
19. Malakooti MH, Kazem N, Yan J, et al. Liquid metal supercooling for low-temperature thermoelectric wearables. Adv Funct Mater 2019;29:1906098.
20. Paracha KN, Butt AD, Alghamdi AS, Babale SA, Soh PJ. Liquid metal antennas: materials, fabrication and applications. Sensors 2019;20:177.
21. Park YG, Lee GY, Jang J, Yun SM, Kim E, Park JU. Liquid metal-based soft electronics for wearable healthcare. Adv Healthc Mater 2021;10:2002280.
22. Ren L, Zhang BW. Room temperature liquid metals for flexible alkali metal-chalcogen batteries. Exploration 2022;2:20210182.
23. Liu T, Zhuge X, Lan J, et al. Study on the 3D printing of flexible pressure sensor by using polyurethane pressure sensitive materials and encapsulated gainsn liquid metal wires. Materials Reports 2022;36:21030297-5.
24. Jackson N, Buckley J, Clarke C, Stam F. Manufacturing methods of stretchable liquid metal-based antenna. Microsyst Technol 2019;25:3175-84.
25. Fassler A, Majidi C. Liquid-phase metal inclusions for a conductive polymer composite. Adv Mater 2015;27:1928-32.
27. Liu S, Kim SY, Henry KE, Shah DS, Kramer-Bottiglio R. Printed and laser-activated liquid metal-elastomer conductors enabled by ethanol/PDMS/liquid metal double emulsions. ACS Appl Mater Interfaces 2021;13:28729-36.
28. Pan C, Liu D, Ford MJ, Majidi C. Ultrastretchable, wearable triboelectric nanogenerator based on sedimented liquid metal elastomer composite. Adv Mater Technol 2020;5:2000754.
29. Lin Y, Cooper C, Wang M, Adams JJ, Genzer J, Dickey MD. Handwritten, soft circuit boards and antennas using liquid metal nanoparticles. Small 2015;11:6397-403.
30. Wang H, Yao Y, He Z, et al. A highly stretchable liquid metal polymer as reversible transitional insulator and conductor. Adv Mater 2019;31:e1901337.
31. Liu S, Yuen MC, White EL, et al. Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible electronics. ACS Appl Mater Interfaces 2018;10:28232-41.
32. Yun G, Tang S, Lu H, Zhang S, Dickey MD, Li W. Hybrid-filler stretchable conductive composites: from fabrication to application. Small Sci 2021;1:2000080.
33. Liu S, Xu Z, Li G, et al. Ultrasonic-enabled nondestructive and substrate-independent liquid metal ink sintering. Adv Sci 2023;10:e2301292.
34. Ren L, Sun S, Casillas-Garcia G, et al. A liquid-metal-based magnetoactive slurry for stimuli-responsive mechanically adaptive electrodes. Adv Mater 2018;30:1802595.
35. Cui Y, Liang F, Yang Z, et al. Metallic bond-enabled wetting behavior at the liquid Ga/CuGa2 interfaces. ACS Appl Mater Interfaces 2018;10:9203-10.
36. Kim JH, Kim S, Kim H, et al. Imbibition-induced selective wetting of liquid metal. Nat Commun 2022;13:4763.
37. Handschuh-wang S, Chen Y, Zhu L, Zhou X. Analysis and transformations of room-temperature liquid metal interfaces - a closer look through interfacial tension. ChemPhysChem 2018;19:1551.
38. Liu D, Liu X, Chen Z, et al. Magnetically driven soft continuum microrobot for intravascular operations in microscale. Cyborg Bionic Syst 2022;2022:9850832.
39. Zheng Y, Yi Z, Liu L, et al. Numerical simulation of efficient solar absorbers and thermal emitters based on multilayer nanodisk arrays. Appl Therm Eng 2023;230:120841.