REFERENCES

1. Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science 2010;327:1603-7.

2. Ray TR, Choi J, Bandodkar AJ, et al. Bio-Integrated wearable systems: a comprehensive review. Chem Rev 2019;119:5461-533.

3. Luo Y, Abidian MR, Ahn JH, et al. Technology roadmap for flexible sensors. ACS Nano 2023;17:5211-95.

4. Yao K, Yang Y, Wu P, Zhao G, Wang L, Yu X. Recent advances in materials, designs and applications of skin electronics. IEEE Open J Nanotechnol 2023;4:55-70.

5. Patel S, Ershad F, Zhao M, et al. Wearable electronics for skin wound monitoring and healing. Soft Sci 2022;2:9.

6. Huang X, Liu Y, Park W, et al. Intelligent soft sweat sensors for the simultaneous healthcare monitoring and safety warning. Adv Healthc Mater 2023;12:e2202846.

7. Song E, Xie Z, Bai W, et al. Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue. Nat Biomed Eng 2021;5:759-71.

8. Wu P, Zhou L, Lv S, Fu J, He Y. Self-sintering liquid metal ink with LAPONITE® for flexible electronics. J Mater Chem C 2021;9:3070-80.

9. Wang B, Thukral A, Xie Z, et al. Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat Commun 2020;11:2405.

10. Yu X, Xie Z, Yu Y, et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019;575:473-9.

11. Li D, Zhou J, Yao K, et al. Touch IoT enabled by wireless self-sensing and haptic-reproducing electronic skin. Sci Adv 2022;8:eade2450.

12. Chen M, Ouyang J, Jian A, et al. Imperceptible, designable, and scalable braided electronic cord. Nat Commun 2022;13:7097.

13. Souri H, Banerjee H, Jusufi A, et al. Wearable and stretchable strain sensors: materials, sensing mechanisms, and applications. Adv Intell Syst-Ger 2020;2:2000039.

14. Shen Z, Liu F, Huang S, et al. Progress of flexible strain sensors for physiological signal monitoring. Biosens Bioelectron 2022;211:114298.

15. Liao X, Zhang Z, Kang Z, Gao F, Liao Q, Zhang Y. Ultrasensitive and stretchable resistive strain sensors designed for wearable electronics. Mater Horiz 2017;4:502-10.

16. Kim SR, Kim JH, Park JW. Wearable and transparent capacitive strain sensor with high sensitivity based on patterned ag nanowire networks. ACS Appl Mater Interfaces 2017;9:26407-16.

17. Lu C, Chen J, Jiang T, Gu G, Tang W, Wang ZL. A stretchable, flexible triboelectric nanogenerator for self-powered real-time motion monitoring. Adv Mater Technol 2018;3:1800021.

18. Huo Z, Wang X, Zhang Y, et al. High-performance Sb-doped p-ZnO NW films for self-powered piezoelectric strain sensors. Nano Energy 2020;73:104744.

19. Wong TH, Yiu CK, Zhou J, et al. Tattoo-like epidermal electronics as skin sensors for human machine interfaces. Soft Sci 2021;1:10.

20. Wang R, Sun L, Zhu X, et al. Carbon nanotube-based strain sensors: structures, fabrication, and applications. Adv Mater Technol 2023;8:2200855.

21. Basarir F, Madani Z, Vapaavuori J. Recent advances in silver nanowire based flexible capacitive pressure sensors: from structure, fabrication to emerging applications. Adv Mater Inter 2022;9:2200866.

22. Baharfar M, Kalantar-Zadeh K. Emerging role of liquid metals in sensing. ACS Sens 2022;7:386-408.

23. Li G, Li C, Li G, et al. Development of conductive hydrogels for fabricating flexible strain sensors. Small 2022;18:e2101518.

24. Dickey MD. Stretchable and soft electronics using liquid metals. Adv Mater 2017;29:1606425.

25. Zhang M, Yao S, Rao W, Liu J. Transformable soft liquid metal micro/nanomaterials. Mat Sci Eng R 2019;138:1-35.

26. Ma J, Krisnadi F, Vong MH, Kong M, Awartani OM, Dickey MD. Shaping a soft future: patterning liquid metals. Adv Mater 2023;35:e2205196.

27. Park YG, Lee GY, Jang J, Yun SM, Kim E, Park JU. Liquid metal-based soft electronics for wearable healthcare. Adv Healthc Mater 2021;10:e2002280.

28. Khoshmanesh K, Tang SY, Zhu JY, et al. Liquid metal enabled microfluidics. Lab Chip 2017;17:974-93.

29. Wu P, Wang Z, Yao X, Fu J, He Y. Recyclable conductive nanoclay for direct in situ printing flexible electronics. Mater Horiz 2021;8:2006-17.

30. Neumann TV, Dickey MD. Liquid Metal direct write and 3d printing: a review. Adv Mater Technol 2020;5:2000070.

31. Li X, Li M, Zong L, et al. Liquid metal droplets wrapped with polysaccharide microgel as biocompatible aqueous ink for flexible conductive devices. Adv Funct Mater 2018;28:1804197.

32. Mohammed MG, Kramer R. All-printed flexible and stretchable electronics. Adv Mater 2017;29:1604965.

33. Tang L, Mou L, Zhang W, Jiang X. Large-scale fabrication of highly elastic conductors on a broad range of surfaces. ACS Appl Mater Interfaces 2019;11:7138-47.

34. Tang L, Cheng S, Zhang L, et al. Printable metal-polymer conductors for highly stretchable bio-devices. iScience 2018;4:302-11.

35. Xu J, Guo H, Ding H, et al. Printable and recyclable conductive ink based on a liquid metal with excellent surface wettability for flexible electronics. ACS Appl Mater Interfaces 2021;13:7443-52.

36. Wu P, Fu J, Xu Y, He Y. Liquid metal microgels for three-dimensional printing of smart electronic clothes. ACS Appl Mater Interfaces 2022;14:13458-67.

37. Lin Y, Genzer J, Dickey MD. Attributes, fabrication, and applications of gallium-based liquid metal particles. Adv Sci 2020;7:2000192.

38. Markvicka EJ, Bartlett MD, Huang X, Majidi C. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat Mater 2018;17:618-24.

39. Wang S, Nie Y, Zhu H, et al. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci Adv 2022;8:eabl5511.

40. Ozutemiz KB, Wissman J, Ozdoganlar OB, Majidi C. EGain-metal interfacing for liquid metal circuitry and microelectronics integration. Adv Mater Interfaces 2018;5:1701596.

41. Liao M, Liao H, Ye J, Wan P, Zhang L. Polyvinyl alcohol-stabilized liquid metal hydrogel for wearable transient epidermal sensors. ACS Appl Mater Interfaces 2019;11:47358-64.

42. Hu G, Wang S, Yu J, Zhang J, Sun Y, Kong D. A facile and scalable patterning approach for ultrastretchable liquid metal features. Lab Chip 2022;22:4933-40.

43. Park YG, An HS, Kim JY, Park JU. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures. Sci Adv 2019;5:eaaw2844.

44. Boley JW, White EL, Kramer RK. Mechanically sintered gallium-indium nanoparticles. Adv Mater 2015;27:2355-60.

45. Chang H, Zhang P, Guo R, et al. Recoverable liquid metal paste with reversible rheological characteristic for electronics printing. ACS Appl Mater Interfaces 2020;12:14125-35.

46. Thrasher CJ, Farrell ZJ, Morris NJ, Willey CL, Tabor CE. Mechanoresponsive polymerized liquid metal networks. Adv Mater 2019;31:e1903864.

47. Kazem N, Hellebrekers T, Majidi C. Soft multifunctional composites and emulsions with liquid metals. Adv Mater 2017;29:1605985.

48. Malakooti MH, Kazem N, Yan J, et al. Liquid metal supercooling for low-temperature thermoelectric wearables. Adv Funct Mater 2019;29:1906098.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/