REFERENCES
1. Zhou Z, Chen K, Li X, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron 2020;3:571-8.
2. Yin R, Wang D, Zhao S, Lou Z, Shen G. Wearable sensors-enabled human-machine interaction systems: from design to application. Adv Funct Mater 2021;31:2008936.
3. Sugiyama M, Uemura T, Kondo M, et al. An ultraflexible organic differential amplifier for recording electrocardiograms. Nat Electron 2019;2:351-60.
4. Wang C, Hwang D, Yu Z, et al. User-interactive electronic skin for instantaneous pressure visualization. Nat Mater 2013;12:899-904.
5. Patel S, Erheem F, Zhao M, et al. Wearable electronics for skin wound monitoring and healing. Soft Sci 2022;2:9.
6. Wehner M, Truby RL, Fitzgerald DJ, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 2016;536:451-5.
7. Araromi OA, Graule MA, Dorsey KL, et al. Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature 2020;587:219-24.
8. Jin T, Sun Z, Li L, et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat Commun 2020;11:5381.
9. Zhao H, Huang R, Shepherd RF. Curvature control of soft orthotics via low cost solid-state optics. In: 2016 IEEE International Conference on Robotics and Automation (ICRA); 2016 May 16-21; Stockholm, Sweden. IEEE; 2016. p. 4008-13.
10. Wang H, Totaro M, Beccai L. Toward perceptive soft robots: progress and challenges. Adv Sci 2018;5:1800541.
11. Yamaguchi T, Kashiwagi T, Arie T, Akita S, Takei K. Human-like electronic skin-integrated soft robotic hand. Adv Intell Syst 2019;1:1900018.
12. Zhang C, Zhou W, Geng D, et al. Laser direct writing and characterizations of flexible piezoresistive sensors with microstructures. Opto-Electron Adv 2021;4:200061.
13. Qi K, He J, Wang H, et al. A highly stretchable nanofiber-based electronic skin with pressure-, strain-, and flexion-sensitive properties for health and motion monitoring. ACS Appl Mater Interfaces 2017;9:42951-60.
14. Chen L, Lu M, Yang H, et al. Textile-based capacitive sensor for physical rehabilitation via surface topological modification. ACS Nano 2020;14:8191-201.
15. Lee S, Franklin S, Hassani FA, et al. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 2020;370:966-70.
16. Ha KH, Zhang W, Jang H, et al. Highly sensitive capacitive pressure sensors over a wide pressure range enabled by the hybrid responses of a highly porous nanocomposite. Adv Mater 2021;33:2170382.
17. Chang C, Tran VH, Wang J, Fuh YK, Lin L. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 2010;10:726-31.
18. Deng W, Yang T, Jin L, et al. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy 2019;55:516-25.
19. Chen J, Chen B, Han K, Tang W, Wang ZL. A triboelectric nanogenerator as a self-powered sensor for a soft-rigid hybrid actuator. Adv Mater Technol 2019;4:1900337.
20. Wen F, Sun Z, He T, et al. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv Sci 2020;7:2000261.
21. Zheng S, Zhang J, Deng H, Du Y, Shi X. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors. J Bioresour Bioprod 2021;6:142-51.
22. Mahanty B, Ghosh SK, Maity K, Roy K, Sarkar S, Mandal D. All-fiber pyro- and piezo-electric nanogenerator for IoT based self-powered health-care monitoring†. Mater Adv 2021;2:4370-9.
23. Li X, Fan YJ, Li HY, et al. Ultracomfortable hierarchical nanonetwork for highly sensitive pressure sensor. ACS Nano 2020;14:9605-12.
24. Pan L, Han L, Liu H, Zhao J, Dong Y, Wang X. Flexible sensor based on hair-like microstructured ionic hydrogel with high sensitivity for pulse wave detection. J Chem Eng 2022;450:137929.
25. Veeramuthu L, Cho CJ, Venkatesan M, et al. Muscle fibers inspired electrospun nanostructures reinforced conductive fibers for smart wearable optoelectronics and energy generators. Nano Energy 2022;101:107592.
26. Yuan Z, Shen G, Pan C, Wang ZL. Flexible sliding sensor for simultaneous monitoring deformation and displacement on a robotic hand/arm. Nano Energy 2020;73:104764.
27. Shen Z, Zhu X, Majidi C, Gu G. Cutaneous ionogel mechanoreceptors for soft machines, physiological sensing, and amputee prostheses. Adv Mater 2021;33:2102069.
28. Zhao C, Wang Y, Tang G, et al. Ionic flexible sensors: mechanisms, materials, structures, and applications. Adv Funct Mater 2022;32:2110417.
29. Niu H, Li H, Gao S, et al. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv Mater 2022;34:2270225.
30. Tian Z, Qin W, Wang Y, et al. Ultra-stable strain/ humidity dual-functional flexible wearable sensor based on brush-like AgNPs@CNTs@TPU heterogeneous structure. Colloids Surf A Physicochem Eng Asp 2023;670:131398.
31. Mannsfeld SCB, Tee BCK, Stoltenberg RM, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater 2010;9:859-64.
32. Lu P, Wang L, Zhu P, et al. Iontronic pressure sensor with high sensitivity and linear response over a wide pressure range based on soft micropillared electrodes. Sci Bull 2021;66:1091-100.
33. Wan ZF, Chen X, Gu M. Laser scribed graphene for supercapacitors. Opto-Electron Adv 2021;4:200079.
34. Zhang L, Pan J, Zhang Z, et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron Adv 2020;3:190022.
35. Qiu Z, Wan Y, Zhou W, et al. Ionic skin with biomimetic dielectric layer templated from Calathea Zebrine leaf. Adv Funct Mater 2018;28:1802343.
36. Zhang P, Zhang J, Li Y, Huang L. Flexible and high sensitive capacitive pressure sensor with microstructured electrode inspired by ginkgo leaf. J Phys D Appl Phys 2021;54:465401.
37. Lin Q, Huang J, Yang J, et al. Highly sensitive flexible iontronic pressure sensor for fingertip pulse monitoring. Adv Healthc Mater 2020;9:2001023.
38. Li Z, Zhu M, Shen J, Qiu Q, Yu J, Ding B. All-fiber structured electronic skin with high elasticity and breathability. Adv Funct Mater 2020;30:1908411.
39. Lin X, Xue H, Li F, Mei H, Zhao H, Zhang T. All-nanofibrous ionic capacitive pressure sensor for wearable applications. ACS Appl Mater Interfaces 2022;14:31385-95.
40. Cui X, Chen J, Wu W, et al. Flexible and breathable all-nanofiber iontronic pressure sensors with ultraviolet shielding and antibacterial performances for wearable electronics. Nano Energy 2022;95:107022.
41. Guo Y, Yin F, Li Y, Shen G, Lee JC. Incorporating wireless strategies to wearable devices enabled by a photocurable hydrogel for monitoring pressure information (Adv. Mater. 29/2023). Adv Mater 2023;35:2370208.
42. Tao K, Chen Z, Yu J, et al. Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfaces. Adv Sci 2022;9:2104168.
43. Chhetry A, Kim J, Yoon H, Park JY. Ultrasensitive interfacial capacitive pressure sensor based on a randomly distributed microstructured iontronic film for wearable applications. ACS Appl Mater Interfaces 2019;11:3438-49.
44. Luo G, Xie J, Liu J, et al. Highly conductive, stretchable, durable, breathable electrodes based on electrospun polyurethane mats superficially decorated with carbon nanotubes for multifunctional wearable electronics. J Chem Eng 2023;451:138549.
45. Kim J, Zhang G, Shi M, Suo Z. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 2021;374:212-6.
46. Brown AEX, Litvinov RI, Discher DE, Purohit PK, Weisel JW. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 2009;325:741-4.
47. Wang X, Zhan S, Lu Z, et al. Healable, recyclable, and mechanically tough polyurethane elastomers with exceptional damage tolerance. Adv Mater 2020;32:2005759.
48. Jeong JW, Yeo WH, Akhtar A, et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv Mater 2013;25:6839-46.
49. Gu XW, Wu Z, Zhang YW, Srolovitz DJ and Greer JR. Microstructure versus flaw: mechanisms of failure and strength in nanostructures. Nano Lett 2013;13:5703-9.
50. Ruth SRA, Bao Z. Designing tunable capacitive pressure sensors based on material properties and microstructure geometry. ACS Appl Mater Interfaces 2020;12:58301-16.
51. Park J, Lee Y, Hong J, et al. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano 2014;8:12020-9.