REFERENCES

1. Alberts B, Heald R, Johnson A, et al. Molecular biology of the cell. 7th ed. New York, NY: Worldwide. Norton & Company; 2022. Available from: https://wwnorton.com/books/9780393884821. [Last accessed on 14 Aug 2023].

2. Lenau T, Stroble J, Stone R, Watkins S. An overview of biomimetic sensor technology. Sensor Rev 2009;29:112-9.

3. Kandel ER, Koester JD, Mack SH, Siegelbaum SA. Principles of neural science. 6th ed. New York, NY: McGraw Hill; 2021. Available from: https://www.mheducation.co.uk/principles-of-neural-science-sixth-edition-9781259642234-emea. [Last accessed on 14 Aug 2023].

4. French AS, Torkkeli PH. Sensory receptors and mechanotransduction. In: Sperelakis N, editor. Cell Physiology Source Book. Elsevier; 2012. p. 633-47. Available from: https://edisciplinas.usp.br/pluginfile.php/5123031/mod_resource/content/2/Nicholas%20Sperelakis-Cell%20Physiology%20Source%20Book%2C%20Fourth%20Edition_%20Essentials%20of%20Membrane%20Biophysics-Academic%20Press%20%282012%29.pdf. [Last accessed on 14 Aug 2023].

5. Willis WD, Coggeshall RE. Sensory receptors and peripheral nerves. In: Sensory Mechanisms of the Spinal Cord. Boston: Springer US; 2004. p. 19-90.

6. Abraira VE, Ginty DD. The sensory neurons of touch. Neuron 2013;79:618-39.

7. Chapleau MW, Sabharwal R. Methods of assessing vagus nerve activity and reflexes. Heart Fail Rev 2011;16:109-27.

8. Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 2012;92:1651-97.

9. Kobayashi S. Temperature receptors in cutaneous nerve endings are thermostat molecules that induce thermoregulatory behaviors against thermal load. Temperature 2015;2:346-51.

10. Wong KY. A retinal ganglion cell that can signal irradiance continuously for 10 hours. J Neurosci 2012;32:11478-85.

11. Tricas TC, Carlson BA. Electroreceptors and magnetoreceptors. In: Cell Physiology Source Book. Elsevier; 2012. p. 705-25.

12. Winklhofer M, Kirschvink JL. A quantitative assessment of torque-transducer models for magnetoreception. J R Soc Interface 2010;7 Suppl 2:S273-89.

13. Wang J, Wang C, Cai P, et al. Artificial sense technology: emulating and extending biological senses. ACS Nano 2021;15:18671-8.

14. Lee Y, Park J, Choe A, Cho S, Kim J, Ko H. Mimicking human and biological skins for multifunctional skin electronics. Adv Funct Mater 2020;30:1904523.

15. Someya T, Bao Z, Malliaras GG. The rise of plastic bioelectronics. Nature 2016;540:379-85.

16. Hong SY, Lee YH, Park H, et al. Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Adv Mater 2016;28:930-5.

17. Zhang C, Ye WB, Zhou K, et al. Bioinspired artificial sensory nerve based on nafion memristor. Adv Funct Mater 2019;29:1808783.

18. Murray AR, Fliesler SJ, Al-Ubaidi MR. Rhodopsin: the functional significance of asn-linked glycosylation and other post-translational modifications. Ophthalmic Genet 2009;30:109-20.

19. Kibenge FS, Strange RJ. Introduction to the anatomy and physiology of the major aquatic animal species in aquaculture. In: Aquaculture Pharmacology. Elsevier; 2021. p. 1-111.

20. Zimmerman A, Bai L, Ginty DD. The gentle touch receptors of mammalian skin. Science 2014;346:950-4.

21. Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS. The receptors and cells for mammalian taste. Nature 2006;444:288-94.

22. Reisert J, Reingruber J. Ca2+-activated Cl- current ensures robust and reliable signal amplification in vertebrate olfactory receptor neurons. Proc Natl Acad Sci U S A 2019;116:1053-8.

23. Mittal R, Nguyen D, Patel AP, et al. Recent advancements in the regeneration of auditory hair cells and hearing restoration. Front Mol Neurosci 2017;10:236.

24. Molday RS, Moritz OL. Photoreceptors at a glance. J Cell Sci 2015;128:4039-45.

25. Bertalmío M. The biological basis of vision: the retina. In: Vision Models for High Dynamic Range and Wide Colour Gamut Imaging. Elsevier; 2020. p. 11-46.

26. Organisciak DT, Vaughan DK. Retinal light damage: mechanisms and protection. Prog Retin Eye Res 2010;29:113-34.

27. Gu L, Poddar S, Lin Y, et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 2020;581:278-82.

28. Stoddard P. Electrical signals. In: Breed MD, Moore J, editors. Encyclopedia of Animal Behavior. Elsevier; 2010. Available from: https://www.sciencedirect.com/referencework/9780080453378/encyclopedia-of-animal-behavior. [Last accessed on 14 Aug 2023].

29. England SJ, Robert D. The ecology of electricity and electroreception. Biol Rev Camb Philos Soc 2022;97:383-413.

30. Newton KC, Gill AB, Kajiura SM. Electroreception in marine fishes: chondrichthyans. J Fish Biol 2019;95:135-54.

31. Baker CVH, Modrell MS. Insights into electroreceptor development and evolution from molecular comparisons with hair cells. Integr Comp Biol 2018;58:329-40.

32. Shen Z, Zhu X, Majidi C, Gu G. Cutaneous ionogel mechanoreceptors for soft machines, physiological sensing, and amputee prostheses. Adv Mater 2021;33:e2102069.

33. Aidley DJ. Mechanoreceptors. In: The Physiology of Excitable Cells. 4th ed. Cambridge: Cambridge University Press; 1998. p. 240-63.

34. Iheanacho F, Vellipuram AR. Physiology, mechanoreceptors. Available from: https://www.ncbi.nlm.nih.gov/books/NBK541068/. [Last accessed on 14 Aug 2023].

35. Deflorio D, Di Luca M, Wing AM. Skin and mechanoreceptor contribution to tactile input for perception: a review of simulation models. Front Hum Neurosci 2022;16:862344.

36. Boughter JD, Munger SD. Taste receptors. In: Lennarz WJ, Lane MD, editors. Encyclopedia of Biological Chemistry. Waltham: Academic Press; 2013. p. 366-8. Available from: https://books.google.com/books?hl=zh-CN&lr=&id=ykUu06JQrjcC&oi=fnd&pg=PP2&dq=Boughter+J,+Munger+S.+Taste+Receptors.+Encyclopedia+of+Biological+Chemistry.&ots=eHzTqQTnW4&sig=z09pfOC_nBMkfR_PDSJOpBbbRCM#v=onepage&q&f=false. [Last accessed on 14 Aug 2023].

37. Shahbandi A, Choo E, Dando R. Receptor regulation in taste: can diet influence how we perceive foods? J 2018;1:106-15.

38. Risso D, Drayna D, Morini G. Alteration, reduction and taste loss: main causes and potential implications on dietary habits. Nutrients 2020;12:3284.

39. Halpern BP. Constraints imposed on taste physiology by human taste reaction time data. Neurosci Biobehav Rev 1986;10:135-51.

40. Williams J, Ringsdorf A. Human odour thresholds are tuned to atmospheric chemical lifetimes. Philos Trans R Soc Lond B Biol Sci 2020;375:20190274.

41. Bhatia-Dey N, Heinbockel T. The olfactory system as marker of neurodegeneration in aging, neurological and neuropsychiatric disorders. Int J Environ Res Public Health 2021;18:6976.

42. Stuck BA, Fadel V, Hummel T, Sommer JU. Subjective olfactory desensitization and recovery in humans. Chem Senses 2014;39:151-7.

43. Pickles JO. Auditory pathways: anatomy and physiology. Handb Clin Neurol 2015;129:3-25.

44. Kurabi A, Keithley EM, Housley GD, Ryan AF, Wong AC. Cellular mechanisms of noise-induced hearing loss. Hear Res 2017;349:129-37.

45. Leventhall G. What is infrasound? Prog Biophys Mol Biol 2007;93:130-7.

46. Legatt AD. Electrophysiologic auditory tests. Handb Clin Neurol 2015;129:289-311.

47. Soci C, Zhang A, Bao XY, Kim H, Lo Y, Wang D. Nanowire photodetectors. J Nanosci Nanotechnol 2010;10:1430-49.

48. Lapierre RR, Robson M, Azizur-rahman KM, Kuyanov P. A review of III-V nanowire infrared photodetectors and sensors. J Phys D: Appl Phys 2017;50:123001.

49. Tang J, Qin N, Chong Y, et al. Nanowire arrays restore vision in blind mice. Nat Commun 2018;9:786.

50. Seo J, Zhang K, Kim M, et al. Flexible phototransistors based on single-crystalline silicon nanomembranes. Adv Opt Mater 2016;4:120-5.

51. Zheng X, Chen Z, Tao X, et al. Retina-inspired flexible photosensitive arrays based on selective photothermal conversion. J Mater Chem C 2022;11:252-9.

52. Li Z, Cui Y, Zhong J. Recent advances in nanogenerators-based flexible electronics for electromechanical biomonitoring. Biosens Bioelectron 2021;186:113290.

53. Guo ZH, Wang HL, Shao J, et al. Bioinspired soft electroreceptors for artificial precontact somatosensation. Sci Adv 2022;8:eabo5201.

54. Ma C, Xu D, Huang YC, et al. Robust flexible pressure sensors made from conductive micropyramids for manipulation tasks. ACS Nano 2020;14:12866-76.

55. Shang C, Xu Q, Liang N, Zhang J, Li L, Peng Z. Multi-parameter e-skin based on biomimetic mechanoreceptors and stress field sensing. npj Flex Electron 2023;7:19.

56. Nguyen TD, Lee JS. Recent development of flexible tactile sensors and their applications. Sensors 2021;22:50.

57. Zhang J, Yao H, Mo J, et al. Finger-inspired rigid-soft hybrid tactile sensor with superior sensitivity at high frequency. Nat Commun 2022;13:5076.

58. Yang Y, Zhang H, Chen J, et al. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 2013;7:7342-51.

59. Arab Hassani F, Mogan RP, Gammad GGL, et al. Toward self-control systems for neurogenic underactive bladder: a triboelectric nanogenerator sensor integrated with a bistable micro-actuator. ACS Nano 2018;12:3487-501.

60. Hassani FA, Lee C. A triboelectric energy harvester using low-cost, flexible, and biocompatible ethylene vinyl acetate (EVA). J Microelectromech Syst 2015;24:1338-45.

61. Kim C, Lee KK, Kang MS, et al. Artificial olfactory sensor technology that mimics the olfactory mechanism: a comprehensive review. Biomater Res 2022;26:40.

62. Chouhdry HH, Lee DH, Bag A, Lee NE. A flexible artificial chemosensory neuronal synapse based on chemoreceptive ionogel-gated electrochemical transistor. Nat Commun 2023;14:821.

63. Moon D, Cha YK, Kim SO, Cho S, Ko HJ, Park TH. FET-based nanobiosensors for the detection of smell and taste. Sci China Life Sci 2020;63:1159-67.

64. Zhao T, Wang Q, Du A. Self-powered flexible sour sensor for detecting ascorbic acid concentration based on triboelectrification/enzymatic-reaction coupling effect. Sensors 2021;21:373.

65. Prasad BB, Tiwari MP. Molecularly imprinted nanomaterial-based highly sensitive and selective medical devices. In: Tiwari A, Ramalingam M, Kobayashi H, Turner APF, editors. Biomedical materials and diagnostic devices. Scrivener Publishing LLC; 2012. p. 339-91.

66. Wang J, Sakai K, Kiwa T. All-in-one terahertz taste sensor: integrated electronic and bioelectronic tongues. Sens Diagn 2023;2:620-6.

67. Nag A, Mukhopadhyay SC. Fabrication and implementation of printed sensors for taste sensing applications. Sens Actuator A Phys 2018;269:53-61.

68. Jung YH, Hong SK, Wang HS, et al. Speech recognition: flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv Mater 2020;32:2070259.

69. Viola G, Chang J, Maltby T, et al. Bioinspired multiresonant acoustic devices based on electrospun piezoelectric polymeric nanofibers. ACS Appl Mater Interfaces 2020;12:34643-57.

70. Wang HS, Hong SK, Han JH, et al. Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci Adv 2021;7:eabe5683.

71. Svechtarova MI, Buzzacchera I, Toebes BJ, Lauko J, Anton N, Wilson CJ. Sensor devices inspired by the five senses: a review. Electroanalysis 2016;28:1201-41.

72. Johnson KJ, Rose-Pehrsson SL. Sensor array design for complex sensing tasks. Annu Rev Anal Chem 2015;8:287-310.

73. Kashyap V, Yin J, Xiao X, Chen J. Bioinspired nanomaterials for wearable sensing and human-machine interfacing. Nano Res 2023:1-17.

74. Parameswaran C, Gupta D. Large area flexible pressure/strain sensors and arrays using nanomaterials and printing techniques. Nano Converg 2019;6:28.

75. Yeo JC, Lim CT. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst Nanoeng 2016;2:16043.

76. Lu K, Li L, Jiang S, et al. Advanced bioinspired organic sensors for future-oriented intelligent applications. Adv Sens Res 2023;2:2200066.

77. Liu Z, Kong J, Qu M, Zhao G, Zhang C. Progress in data acquisition of wearable sensors. Biosensors 2022;12:889.

78. Marquez AV, McEvoy N, Pakdel A. Organic electrochemical transistors (OECTs) toward flexible and wearable bioelectronics. Molecules 2020;25:5288.

79. Braendlein M, Lonjaret T, Leleux P, Badier JM, Malliaras GG. Voltage amplifier based on organic electrochemical transistor. Adv Sci 2017;4:1600247.

80. Li Z, Wei Q, Han J. Editorial: array-based sensing techniques for clinical, agricultural biotechnology, and environmental analysis. Front Chem 2021;9:654707.

81. Duan Y, He S, Wu J, Su B, Wang Y. Recent progress in flexible pressure sensor arrays. Nanomaterials 2022;12:2495.

82. Dincer C, Bruch R, Costa-Rama E, et al. Disposable sensors in diagnostics, food, and environmental monitoring. Adv Mater 2019;31:e1806739.

83. Yang Y, Gao W. Wearable and flexible electronics for continuous molecular monitoring. Chem Soc Rev 2019;48:1465-91.

84. Cheng S, Gu Z, Zhou L, et al. Recent progress in intelligent wearable sensors for health monitoring and wound healing based on biofluids. Front Bioeng Biotechnol 2021;9:765987.

85. Dong W, Wang Y, Zhou Y, et al. Soft human-machine interfaces: design, sensing and stimulation. Int J Intell Robot Appl 2018;2:313-38.

86. Kim DH, Lu N, Ma R, et al. Epidermal electronics. Science 2011;333:838-43.

87. Arab Hassani F, Jin H, Yokota T, Someya T, Thakor NV. Soft sensors for a sensing-actuation system with high bladder voiding efficiency. Sci Adv 2020;6:eaba0412.

88. Ren L, Li B, Wei G, et al. Biology and bioinspiration of soft robotics: actuation, sensing, and system integration. iScience 2021;24:103075.

89. Bhave G, Chen JC, Singer A, Sharma A, Robinson JT. Distributed sensor and actuator networks for closed-loop bioelectronic medicine. Mater Today 2021;46:125-35.

90. Yoo S, Yang T, Park M, et al. Responsive materials and mechanisms as thermal safety systems for skin-interfaced electronic devices. Nat Commun 2023;14:1024.

91. Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med 2016;48:e219.

92. Grose DN, O’brien CL, Castle DJ. Type 1 diabetes and an insulin pump: an iterative review of qualitative literature. Pract Diab 2017;34:281-7c.

93. Ilami M, Bagheri H, Ahmed R, Skowronek EO, Marvi H. Materials, actuators, and sensors for soft bioinspired robots. Adv Mater 2021;33:e2003139.

94. Li S, Wang KW. Plant-inspired adaptive structures and materials for morphing and actuation: a review. Bioinspir Biomim 2016;12:011001.

95. Speck T, Cheng T, Klimm F, et al. Plants as inspiration for material-based sensing and actuation in soft robots and machines. MRS Bulletin 2023.

96. Yang M, Wu J, Jiang W, Hu X, Iqbal MI, Sun F. Bioinspired and hierarchically textile‐structured soft actuators for healthcare wearables. Adv Funct Mater 2023;33:2210351.

97. Lan R, Shen W, Yao W, Chen J, Chen X, Yang H. Bioinspired humidity-responsive liquid crystalline materials: from adaptive soft actuators to visualized sensors and detectors. Mater Horiz 2023;10:2824-44.

98. Jiang L, Lu G, Zeng Y, et al. Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses. Nat Commun 2022;13:3853.

99. Lee HJ, Baik S, Hwang GW, et al. An electronically perceptive bioinspired soft wet-adhesion actuator with carbon nanotube-based strain sensors. ACS Nano 2021;15:14137-48.

100. Ren J, Liu Q, Pei Y, et al. Bioinspired energy storage and harvesting devices. Adv Mater Technol 2021;6:2001301.

101. Peng L, Zhang Y, Wang J, et al. Slug-inspired magnetic soft millirobot fully integrated with triboelectric nanogenerator for on-board sensing and self-powered charging. Nano Energy 2022;99:107367.

102. Arab Hassani F, Shi Q, Wen F, et al. Smart materials for smart healthcare- moving from sensors and actuators to self-sustained nanoenergy nanosystems. Smart Mater Med 2020;1:92-124.

103. Wang Y, Hong M, Venezuela J, Liu T, Dargusch M. Expedient secondary functions of flexible piezoelectrics for biomedical energy harvesting. Bioact Mater 2023;22:291-311.

104. Wang X, Yin Y, Yi F, et al. Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics. Nano Energy 2017;39:429-36.

105. Tauber FJ, Slesarenko V. Early career scientists converse on the future of soft robotics. Front Robot AI 2023;10:1129827.

106. Zhi C, Shi S, Zhang S, et al. Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nanomicro Lett 2023;15:60.

107. Li W, Pei Y, Zhang C, Kottapalli AGP. Bioinspired designs and biomimetic applications of triboelectric nanogenerators. Nano Energy 2021;84:105865.

108. Shin D, Han HJ, Kim W, et al. Bioinspired piezoelectric nanogenerators based on vertically aligned phage nanopillars. Energy Environ Sci 2015;8:3198-203.

109. Senthil R, Yuvaraj S. A comprehensive review on bioinspired solar photovoltaic cells. Int J Energy Res 2019;43:1068-81.

110. Liu R, Wang ZL, Fukuda K, Someya T. Flexible self-charging power sources. Nat Rev Mater 2022;7:870-86.

111. Valle M. Bioinspired sensor systems. Sensors 2011;11:10180-6.

112. Jung YH, Park B, Kim JU, Kim TI. Bioinspired electronics for artificial sensory systems. Adv Mater 2019;31:e1803637.

113. Xiao K, Wan C, Jiang L, Chen X, Antonietti M. Bioinspired ionic sensory systems: the successor of electronics. Adv Mater 2020;32:e2000218.

114. Li P, Anwar Ali HP, Cheng W, Yang J, Tee BCK. Bioinspired prosthetic interfaces. Adv Mater Technol 2020;5:1900856.

115. Xue J, Zou Y, Deng Y, Li Z. Bioinspired sensor system for health care and human-machine interaction. EcoMat 2022;4:e12209.

116. Choi C, Choi MK, Liu S, et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat Commun 2017;8:1664.

117. Song WJ, Lee Y, Jung Y, et al. Soft artificial electroreceptors for noncontact spatial perception. Sci Adv 2021;7:eabg9203.

118. Yu X, Xie Z, Yu Y, et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019;575:473-9.

119. Zhou Q, Ji B, Wei Y, et al. A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high sensitivity and a broad detection range. J Mater Chem A 2019;7:27334-46.

120. Kim SH, Baek GW, Yoon J, et al. A bioinspired stretchable sensory-neuromorphic system. Adv Mater 2021;33:e2104690.

121. Wang J, Zhu Y, Wu Z, et al. Wearable multichannel pulse condition monitoring system based on flexible pressure sensor arrays. Microsyst Nanoeng 2022;8:16.

122. Fan W, He Q, Meng K, et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci Adv 2020;6:eaay2840.

123. Huang S, Zhang T, Li H, et al. Flexible tongue electrode array system for in vivo mapping of electrical signals of taste sensation. ACS Sens 2021;6:4108-17.

124. Yeom J, Choe A, Lim S, Lee Y, Na S, Ko H. Soft and ion-conducting hydrogel artificial tongue for astringency perception. Sci Adv 2020;6:eaba5785.

125. Lorwongtragool P, Baumann RR, Sowade E, Watthanawisuth N, Kerdcharoen T. A Zigbee-based wireless wearable electronic nose using flexible printed sensor array. In: 2013 IEEE 5th International Nanoelectronics Conference; 2013 Jan 2-4; Singapore. IEEE; 2013. p. 291-3.

126. Zheng Y, Li H, Shen W, Jian J. Wearable electronic nose for human skin odor identification: a preliminary study. Sens Actuator A Phys 2019;285:395-405.

127. Yang C, Xiang Y, Liao B, Hu X. 3D-printed bionic ear for sound identification and localization based on in situ polling of PVDF-TrFE film. Macromol Biosci 2023;23:2200374.

128. Shin YE, Park YJ, Ghosh SK, Lee Y, Park J, Ko H. Ultrasensitive multimodal tactile sensors with skin-inspired microstructures through localized ferroelectric polarization. Adv Sci 2022;9:2105423.

129. Hua Q, Sun J, Liu H, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat Commun 2018;9:244.

130. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. Human photoreceptor topography. J Comp Neurol 1990;292:497-523.

131. Kalmijn AJ. The electric sense of sharks and rays. J Exp Biol 1971;55:371-83.

132. Collin SP. Electroreception in vertebrates and invertebrates. In: Breed MD, Moore J, editors. Encyclopedia of Animal Behavior. Elsevier; 2010. p. 611-20. Available from: https://www.sciencedirect.com/referencework/9780080453378/encyclopedia-of-animal-behavior. [Last accessed on 14 Aug 2023].

133. Gonzalez-Franco M, Lanier J. Model of illusions and virtual reality. Front Psychol 2017;8:1125.

134. Syed TA, Siddiqui MS, Abdullah HB, et al. In-depth review of augmented reality: tracking technologies, development tools, ar displays, collaborative ar, and security concerns. Sensors 2022;23:146.

135. Stein BE, Stanford TR, Rowland BA. Multisensory integration and the society for neuroscience: then and now. J Neurosci 2020;40:3-11.

136. Liu Y, Yiu CK, Zhao Z, et al. Soft, miniaturized, wireless olfactory interface for virtual reality. Nat Commun 2023;14:2297.

137. Tauber F, Desmulliez M, Piccin O, Stokes AA. Perspective for soft robotics: the field’s past and future. Bioinspir Biomim 2023;18:035001.

138. Lopez-Ojeda W, Amarendra P, Mandy A, Oakley AM. Anatomy, skin (Integument). Available from: https://www.ncbi.nlm.nih.gov/books/NBK441980/. [Last accessed on 14 Aug 2023].

139. Caire MJ, Reddy V, Varacallo M. Physiology, synapse. Available from: https://www.ncbi.nlm.nih.gov/books/NBK526047/. [Last accessed on 14 Aug 2023].

140. Kebe M, Gadhafi R, Mohammad B, Sanduleanu M, Saleh H, Al-Qutayri M. Human vital signs detection methods and potential using radars: a review. Sensors 2020;20:1454.

141. Ahmad R, Dalziel JE. G protein-coupled receptors in taste physiology and pharmacology. Front Pharmacol 2020;11:587664.

142. Essick GK, Trulsson M. Tactile sensation in oral region. In: Binder MD, Hirokawa N, Windhorst U, editors. Encyclopedia of Neuroscience. Berlin: Springer Berlin Heidelberg; 2009. p. 3999-4005.

143. Kaczmarek KA. The tongue display unit (TDU) for electrotactile spatiotemporal pattern presentation. Sci Iran D Comput Sci Eng Electr Eng 2011;18:1476-85.

144. Krautwurst D. Human olfactory receptor families and their odorants. Chem Biodivers 2008;5:842-52.

145. Ramgir NS. Electronic nose based on nanomaterials: issues, challenges, and prospects. ISRN Nanomaterials 2013;2013:1-21.

146. Manley GA, Lukashkin AN, Simões P, Burwood GWS, Russell IJ. The mammalian ear: physics and the principles of evolution. Acoust Today 2018;14:1-9. Available from: https://acousticstoday.org/wp-content/uploads/2019/03/The-Mammalian-Ear-Physics-and-the-Principles-of-Evolution.pdf. [Last accessed on 14 Aug 2023]

147. Sheikh A, Bint-e-zainab, Shabbir K, Imtiaz A. Structure and physiology of human ear involved in hearing. In: Naz S, editor. Auditory System - Function and Disorders. IntechOpen; 2022.

148. Xiang L, Wang Y, Xia F, et al. An epidermal electronic system for physiological information acquisition, processing, and storage with an integrated flash memory array. Sci Adv 2022;8:eabp8075.

149. Liu M, Zhang Y, Wang J, et al. A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments. Nat Commun 2022;13:79.

150. Gao Y, Nguyen DT, Yeo T, et al. A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. Sci Adv 2021;7:eabg9614.

151. Kim J, Kim M, Lee MS, et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat Commun 2017;8:14997.

152. Guo S, Wu K, Li C, et al. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter 2021;4:969-85.

153. Gao W, Emaminejad S, Nyein HYY, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016;529:509-14.

154. Beduk T, Beduk D, Hasan MR, et al. Smartphone-based multiplexed biosensing tools for health monitoring. Biosensors 2022;12:583.

155. Lee S, Kim SR, Jeon KH, et al. A fabric-based wearable sensor for continuous monitoring of decubitus ulcer of subjects lying on a bed. Sci Rep 2023;13:5773.

156. Wu X, Li E, Liu Y, et al. Artificial multisensory integration nervous system with haptic and iconic perception behaviors. Nano Energy 2021;85:106000.

157. Yu J, Zhang K, Deng Y. Recent progress in pressure and temperature tactile sensors: Principle, classification, integration and outlook. Soft Sci 2021;1:6.

158. Duan S, Shi Q, Wu J. Multimodal sensors and ml-based data fusion for advanced robots. Adv Intell Syst 2022;4:2200213.

159. Matsuda R, Mizuguchi S, Nakamura F, et al. Highly stretchable sensing array for independent detection of pressure and strain exploiting structural and resistive control. Sci Rep 2020;10:12666.

160. Cho S, Han H, Park H, et al. Wireless, multimodal sensors for continuous measurement of pressure, temperature, and hydration of patients in wheelchair. npj Flex Electron 2023;7:8.

161. Hozumi S, Honda S, Arie T, Akita S, Takei K. Multimodal wearable sensor sheet for health-related chemical and physical monitoring. ACS Sens 2021;6:1918-24.

162. Philip J. Photopyroelectric spectroscopy: a direct photothermal technique to evaluate thermal properties of condensed matter. In: Thakur SN, Rai VN, Singh JP, editors. Photoacoustic and Photothermal Spectroscopy. Elsevier; 2023. p. 231-43.

163. Sin ML, Mach KE, Wong PK, Liao JC. Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev Mol Diagn 2014;14:225-44.

164. Pauliukaite R, Voitechovič E. Multisensor systems and arrays for medical applications employing naturally-occurring compounds and materials. Sensors 2020;20:3551.

165. Lee S, Franklin S, Hassani FA, et al. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 2020;370:966-70.

166. Mannsfeld SC, Tee BC, Stoltenberg RM, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater 2010;9:859-64.

167. Lim HR, Kim HS, Qazi R, Kwon YT, Jeong JW, Yeo WH. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv Mater 2020;32:e1901924.

168. Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science 2010;327:1603-7.

169. Wang C, Hwang D, Yu Z, et al. User-interactive electronic skin for instantaneous pressure visualization. Nat Mater 2013;12:899-904.

170. Li Y, Long J, Chen Y, Huang Y, Zhao N. Crosstalk-free, high-resolution pressure sensor arrays enabled by high-throughput laser manufacturing. Adv Mater 2022;34:e2200517.

171. Wang R, Hu S, Zhu W, et al. Recent progress in high-resolution tactile sensor array: from sensor fabrication to advanced applications. Prog Nat Sci Mater Inter 2023;33:55-66.

172. Nan X, Xu Z, Cao X, et al. A review of epidermal flexible pressure sensing arrays. Biosensors 2023;13:656.

173. Yao G, Yin C, Wang Q, et al. Flexible bioelectronics for physiological signals sensing and disease treatment. J Materiomics 2020;6:397-413.

174. Ates HC, Nguyen PQ, Gonzalez-Macia L, et al. End-to-end design of wearable sensors. Nat Rev Mater 2022;7:887-907.

175. Zhang S, Suresh L, Yang J, Zhang X, Tan SC. Augmenting sensor performance with machine learning towards smart wearable sensing electronic systems. Adv Intell Syst 2022;4:2100194.

176. Zeng X, Hu Y. Sensation and perception of a bioinspired flexible smart sensor system. ACS Nano 2021;15:9238-43.

177. Faura G, Boix-Lemonche G, Holmeide AK, et al. Colorimetric and electrochemical screening for early detection of diabetes mellitus and diabetic retinopathy-application of sensor arrays and machine learning. Sensors 2022;22:718.

178. Luo Y, Abidian MR, Ahn JH, et al. Technology roadmap for flexible sensors. ACS Nano 2023;17:5211-95.

179. Zhang Y, Hu Y, Jiang N, Yetisen AK. Wearable artificial intelligence biosensor networks. Biosens Bioelectron 2022;219:114825.

180. Tu J, Wang M, Li W, et al. Electronic skins with multimodal sensing and perception. Soft Sci 2023;3:25.

181. Muhammad G, Alshehri F, Karray F, Saddik AE, Alsulaiman M, Falk TH. A comprehensive survey on multimodal medical signals fusion for smart healthcare systems. Information Fusion 2021;76:355-75.

182. Christodouleas DC, Kaur B, Chorti P. From point-of-care testing to ehealth diagnostic devices (eDiagnostics). ACS Cent Sci 2018;4:1600-16.

183. Affia AO, Finch H, Jung W, Samori IA, Potter L, Palmer X. IoT health devices: exploring security risks in the connected landscape. IoT 2023;4:150-82.

184. Bhatti DS, Saleem S, Imran A, et al. A survey on wireless wearable body area networks: a perspective of technology and economy. Sensors 2022;22:7722.

185. Liu D, Gao Y, Zhou L, Wang J, Wang ZL. Recent advances in high-performance triboelectric nanogenerators. Nano Res 2023; doi: 10.1007/s12274-023-5660-8.

186. Liu H, Fu H, Sun L, Lee C, Yeatman EM. Hybrid energy harvesting technology: from materials, structural design, system integration to applications. Renew Sust Energ 2021;137:110473.

187. Dagdeviren C, Yang BD, Su Y, et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc Natl Acad Sci U S A 2021;118:e2110994118.

188. Dai C, Chen H, Wang L, et al. A highly temperature- and pressure-sensitive soft sensor self-powered by a galvanic cell design. J Mater Chem A 2022;10:4408-17.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/