REFERENCES
1. Ilderem V. The technology underpinning 5G. Nat Electron 2020;3:5-6.
2. Shi Q, Yang Y, Sun Z, Lee C. Progress of advanced devices and internet of things systems as enabling technologies for smart homes and health care. ACS Mater Au 2022;2:394-435.
3. Xiao X, Fang Y, Xiao X, Xu J, Chen J. Machine-learning-aided self-powered assistive physical therapy devices. ACS Nano 2021;15:18633-46.
4. Heng W, Solomon S, Gao W. Flexible electronics and devices as human-machine interfaces for medical robotics. Adv Mater 2022;34:e2107902.
5. Yu Y, Li J, Solomon SA, et al. All-printed soft human-machine interface for robotic physicochemical sensing. Sci Robot 2022;7:eabn0495.
6. Wang K, Yap LW, Gong S, Wang R, Wang SJ, Cheng W. Nanowire-based soft wearable human-machine interfaces for future virtual and augmented reality applications. Adv Funct Mater 2021;31:2008347.
7. Duan S, Shi Q, Hong J, et al. Water-modulated biomimetic hyper-attribute-gel electronic skin for robotics and skin-attachable wearables. ACS Nano ;2023:1355-71.
8. Sun Z, Zhu M, Shan X, Lee C. Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat Commun 2022;13:5224.
9. Alagumalai A, Shou W, Mahian O, et al. Self-powered sensing systems with learning capability. Joule 2022;6:1475-500.
10. Yu X, Xie Z, Yu Y, et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019;575:473-9.
11. Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater 2019;31:e1904765.
12. Yin R, Wang D, Zhao S, Lou Z, Shen G. Wearable sensors-enabled human-machine interaction systems: from design to application. Adv Funct Mater 2021;31:2008936.
13. Wei X, Li H, Yue W, et al. A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter 2022;5:1481-501.
14. Duan S, Yang H, Hong J, et al. A skin-beyond tactile sensor as interfaces between the prosthetics and biological systems. Nano Energy 2022;102:107665.
15. Zhu M, Sun Z, Chen T, Lee C. Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system. Nat Commun 2021;12:2692.
16. Guo X, He T, Zhang Z, et al. Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion. ACS Nano 2021;15:19054-69.
17. Niu H, Li H, Li Y, et al. Cocklebur-inspired “branch-seed-spininess” 3D hierarchical structure bionic electronic skin for intelligent perception. Nano Energy 2023;107:108144.
18. Shi Z, Meng L, Shi X, et al. Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nanomicro Lett 2022;14:141.
19. Niu H, Li H, Gao S, et al. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv Mater 2022;34:e2202622.
20. Sim K, Rao Z, Zou Z, et al. Metal oxide semiconductor nanomembrane-based soft unnoticeable multifunctional electronics for wearable human-machine interfaces. Sci Adv 2019;5:eaav9653.
21. Niu H, Zhang H, Yue W, et al. Micro-nano processing of active layers in flexible tactile sensors via template methods: a review. Small 2021;17:e2100804.
22. Xiong J, Chen J, Lee PS. Functional fibers and fabrics for soft robotics, wearables, and human-robot interface. Adv Mater 2021;33:e2002640.
23. Liu S, Ma K, Yang B, Li H, Tao X. Textile electronics for VR/AR applications. Adv Funct Mater 2021;31:2007254.
24. Shi X, Zuo Y, Zhai P, et al. Large-area display textiles integrated with functional systems. Nature 2021;591:240-5.
25. Shen S, Yi J, Sun Z, et al. Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nanomicro Lett 2022;14:225.
26. He J, Lu C, Jiang H, et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 2021;597:57-63.
27. Wu R, Liu S, Lin Z, Zhu S, Ma L, Wang ZL. Industrial fabrication of 3D braided stretchable hierarchical interlocked fancy-yarn triboelectric nanogenerator for self-powered smart fitness system. Adv Energy Mater 2022;12:2201288.
28. Gaubert V, Vauche G, Weimmerskirch-Aubatin J, et al. Toward autonomous wearable triboelectric systems integrated on textiles. iScience 2022;25:105264.
29. Zhang Y, Zhou J, Zhang Y, Zhang D, Yong KT, Xiong J. Elastic fibers/fabrics for wearables and bioelectronics. Adv Sci 2022;9:e2203808.
30. Xu F, Jin X, Lan C, et al. 3D arch-structured and machine-knitted triboelectric fabrics as self-powered strain sensors of smart textiles. Nano Energy 2023;109:108312.
31. Zhi C, Shi S, Zhang S, et al. Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nanomicro Lett 2023;15:60.
32. Wang L, Tian M, Qi X, et al. Customizable textile sensors based on helical core-spun yarns for seamless smart garments. Langmuir 2021;37:3122-9.
33. Cui X, Wu H, Wang R. Fibrous triboelectric nanogenerators: fabrication, integration, and application. J Mater Chem A 2022;10:15881-905.
34. Dong K, Peng X, Cheng R, et al. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Adv Mater 2022;34:e2109355.
35. Dong K, Peng X, Wang ZL. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater 2020;32:e1902549.
36. Libanori A, Chen G, Zhao X, Zhou Y, Chen J. Smart textiles for personalized healthcare. Nat Electron 2022;5:142-56.
37. Chen G, Xiao X, Zhao X, Tat T, Bick M, Chen J. Electronic textiles for wearable point-of-care systems. Chem Rev 2022;122:3259-91.
38. Tat T, Chen G, Zhao X, Zhou Y, Xu J, Chen J. Smart textiles for healthcare and sustainability. ACS Nano 2022;16:13301-13.
39. Meena JS, Choi SB, Jung SB, Kim JW. Electronic textiles: new age of wearable technology for healthcare and fitness solutions. Mater Today Bio 2023;19:100565.
40. Guo Y, Wei X, Gao S, Yue W, Li Y, Shen G. Recent advances in carbon material-based multifunctional sensors and their applications in electronic skin systems. Adv Funct Mater 2021;31:2104288.
41. Lai Y, Lu H, Wu H, et al. Elastic multifunctional liquid-metal fibers for harvesting mechanical and electromagnetic energy and as self-powered sensors. Adv Energy Mater 2021;11:2100411.
42. Wang T, Meng J, Zhou X, et al. Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nat Commun 2022;13:7432.
43. Zhang J, Wang Y, Zhou J, et al. Multi-functional STF-based yarn for human protection and wearable systems. Chem Eng J 2023;453:139869.
44. Yang Y, Sun N, Wen Z, et al. Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 2018;12:2027-34.
45. Zhou Z, Padgett S, Cai Z, et al. Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosens Bioelectron 2020;155:112064.
46. Lan L, Jiang C, Yao Y, Ping J, Ying Y. A stretchable and conductive fiber for multifunctional sensing and energy harvesting. Nano Energy 2021;84:105954.
47. Qu Y, Nguyen-Dang T, Page AG, et al. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Adv Mater 2018;30:e1707251.
48. Tong Y, Feng Z, Kim J, Robertson JL, Jia X, Johnson BN. 3D printed stretchable triboelectric nanogenerator fibers and devices. Nano Energy 2020;75:104973.
49. Zhao H, Qi X, Ma Y, et al. Wearable sunlight-triggered bimorph textile actuators. Nano Lett 2021;21:8126-34.
50. Dong K, Wang YC, Deng J, et al. A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 2017;11:9490-9.
51. Lin R, Kim HJ, Achavananthadith S, et al. Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nat Commun 2022;13:2190.
52. Peng X, Dong K, Ye C, et al. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci Adv 2020;6:eaba9624.
53. Ouyang Z, Li S, Liu J, et al. Bottom-up reconstruction of smart textiles with hierarchical structures to assemble versatile wearable devices for multiple signals monitoring. Nano Energy 2022;104:107963.
54. Jiang F, Zhou X, Lv J, et al. Stretchable, breathable, and stable lead-free perovskite/polymer nanofiber composite for hybrid triboelectric and piezoelectric energy harvesting. Adv Mater 2022;34:e2200042.
55. Liang X, Zhu M, Li H, et al. Hydrophilic, breathable, and washable graphene decorated textile assisted by silk sericin for integrated multimodal smart wearables. Adv Funct Mater 2022;32:2200162.
56. Zhang Z, He T, Zhu M, et al. Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. NPJ Flex Electron 2020:4.
57. Dong K, Peng X, An J, et al. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat Commun 2020;11:2868.
58. Zhang Q, Li L, Li H, et al. Ultra-endurance coaxial-fiber stretchable sensing systems fully powered by sunlight. Nano Energy 2019;60:267-74.
59. Jing T, Xu B, Yang Y. Organogel electrode based continuous fiber with large-scale production for stretchable triboelectric nanogenerator textiles. Nano Energy 2021;84:105867.
60. Yang E, Xu Z, Chur LK, et al. Nanofibrous smart fabrics from twisted yarns of electrospun piezopolymer. ACS Appl Mater Interf 2017;9:24220-9.
61. Wu G, Yang Z, Zhang Z, et al. High performance stretchable fibrous supercapacitors and flexible strain sensors based on CNTs/MXene-TPU hybrid fibers. Electrochim Acta 2021;395:139141.
62. Loke G, Yan W, Khudiyev T, Noel G, Fink Y. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv Mater 2020;32:e1904911.
63. Chen Y, Deng Z, Ouyang R, et al. 3D printed stretchable smart fibers and textiles for self-powered e-skin. Nano Energy 2021;84:105866.
64. Khan AQ, Yu K, Li J, et al. Spider silk supercontraction-inspired cotton-hydrogel self-adapting textiles. Adv Fiber Mater 2022;4:1572-83.
65. Gan L, Zeng Z, Lu H, et al. A large-scalable spraying-spinning process for multifunctional electronic yarns. SmartMat 2023:4.
66. Mi H, Zhong L, Tang X, et al. Electroluminescent fabric woven by ultrastretchable fibers for arbitrarily controllable pattern display. ACS Appl Mater Interf 2021;13:11260-7.
67. Park Y, Park M, Lee J. Reduced graphene oxide-based artificial synapse yarns for wearable textile device applications. Adv Funct Mater 2018;28:1804123.
68. Chen C, Chen L, Wu Z, et al. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors. Mater Today 2020;32:84-93.
69. Park J, Choi AY, Lee CJ, Kim D, Kim YT. Highly stretchable fiber-based single-electrode triboelectric nanogenerator for wearable devices. RSC Adv 2017;7:54829-34.
70. Liu R, Li J, Li M, et al. MXene-coated air-permeable pressure-sensing fabric for smart wear. ACS Appl Mater Interf 2020;12:46446-54.
71. Kim J, Kim W, Jang G, Hyeon DS, Park MH, Hong JP. 1D stretchable block copolymer yarn-based energy harvesters via BaTiO3/polydimethylsiloxane composite-carbon conductive ink. Adv Energy Mater 2020;10:1903217.
72. Jing T, Xu B, Xin JH, Guan X, Yang Y. Series to parallel structure of electrode fiber: an effective method to remarkably reduce inner resistance of triboelectric nanogenerator textiles. J Mater Chem A 2021;9:12331-9.
73. Wang W, Yu A, Liu X, et al. Large-scale fabrication of robust textile triboelectric nanogenerators. Nano Energy 2020;71:104605.
74. Li L, Wang K, Fan H, et al. Scalable fluid-spinning nanowire-based inorganic semiconductor yarns for electrochromic actuators. Mater Horiz 2021;8:1711-21.
75. Gao Y, Li Z, Xu B, et al. Scalable core-spun coating yarn-based triboelectric nanogenerators with hierarchical structure for wearable energy harvesting and sensing via continuous manufacturing. Nano Energy 2022;91:106672.
76. Yang Y, Xu B, Gao Y, Li M. Conductive composite fiber with customizable functionalities for energy harvesting and electronic textiles. ACS Appl Mater Interf 2021;13:49927-35.
77. He Q, Wu Y, Feng Z, et al. An all-textile triboelectric sensor for wearable teleoperated human-machine interaction. J Mater Chem A 2019;7:26804-11.
78. Tang J, Wu Y, Ma S, Yan T, Pan Z. Flexible strain sensor based on CNT/TPU composite nanofiber yarn for smart sports bandage. Compos B Eng 2022;232:109605.
79. Zhou M, Xu F, Ma L, et al. Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric nanogenerators for self-powered sensing systems. Nano Energy 2022;104:107885.
80. Pinto TV, Fernandes DM, Guedes A, et al. Photochromic polypropylene fibers based on UV-responsive silica@phosphomolybdate nanoparticles through melt spinning technology. Chem Eng J 2018;350:856-66.
81. Choi W, Kwon Y, Yu W, Kim DW. Graphite fiber electrode by continuous wet-spinning. ACS Appl Energy Mater 2022;5:8963-72.
82. Zhang D, Yang W, Gong W, et al. Abrasion resistant/waterproof stretchable triboelectric yarns based on fermat spirals. Adv Mater 2021;33:e2100782.
83. Ma L, Zhou M, Wu R, et al. Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing. ACS Nano 2020;14:4716-26.
84. Probst H, Katzer K, Nocke A, Hickmann R, Zimmermann M, Cherif C. Melt spinning of highly stretchable, electrically conductive filament yarns. Polymers 2021;13:590.
85. Wang Q, Ma W, Yin E, et al. Melt spinning of low-cost activated carbon fiber with a tunable pore structure for high-performance flexible supercapacitors. ACS Appl Energy Mater 2020;3:9360-8.
86. Cho SY, Yu H, Choi J, et al. Continuous meter-scale synthesis of weavable tunicate cellulose/carbon nanotube fibers for high-performance wearable sensors. ACS Nano 2019;13:9332-41.
87. Dong C, Leber A, Das Gupta T, et al. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat Commun 2020;11:3537.
88. Loke G, Khudiyev T, Wang B, et al. Digital electronics in fibres enable fabric-based machine-learning inference. Nat Commun 2021;12:3317.
89. Wang Z, Wu T, Wang Z, et al. Designer patterned functional fibers via direct imprinting in thermal drawing. Nat Commun 2020;11:3842.
90. Yan W, Dong C, Xiang Y, et al. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater Today 2020;35:168-94.
91. Marion JS, Gupta N, Cheung H, Monir K, Anikeeva P, Fink Y. Thermally drawn highly conductive fibers with controlled elasticity. Adv Mater 2022;34:e2201081.
92. Zhang T, Li K, Zhang J, et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy 2017;41:35-42.
93. Zheng L, Zhu M, Wu B, Li Z, Sun S, Wu P. Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. Sci Adv 2021:7.
94. Wu Y, Dai X, Sun Z, et al. Highly integrated, scalable manufacturing and stretchable conductive core/shell fibers for strain sensing and self-powered smart textiles. Nano Energy 2022;98:107240.
95. Ding X, Yu Y, Shang L, Zhao Y. Histidine-triggered go hybrid hydrogels for microfluidic 3D printing. ACS Nano 2022;16:19533-42.
96. Fan W, He Q, Meng K, et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci Adv 2020;6:eaay2840.
97. Ye C, Dong S, Ren J, Ling S. Ultrastable and high-performance silk energy harvesting textiles. Nanomicro Lett 2019;12:12.
98. Zhang X, Yang W, Shao Z, et al. A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano 2022;16:2188-97.
99. Wei Y, Zhang W, Hou C, Zhang Q, Li Y, Wang H. Independent dual-responsive Janus chromic fibers. Sci China Mater 2021;64:1770-9.
100. Zhong W, Ming X, Jiang H, et al. Full-textile human motion detection systems integrated by facile weaving with hierarchical core-shell piezoresistive yarns. ACS Appl Mater Interf ;2021:52901-11.
101. Gong W, Guo Y, Yang W, et al. Scalable and reconfigurable green electronic textiles with personalized comfort management. ACS Nano 2022;16:12635-44.
102. Zeng S, Pian S, Su M, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 2021;373:692-6.
103. Choi HW, Shin DW, Yang J, et al. Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications. Nat Commun 2022;13:814.
104. Peng Y, Sun F, Xiao C, et al. Hierarchically structured and scalable artificial muscles for smart textiles. ACS Appl Mater Interf 2021;13:54386-95.
105. Yang Q, Liu N, Yin J, Tian H, Yang Y, Ren TL. Understanding the origin of tensile response in a graphene textile strain sensor with negative differential resistance. ACS Nano 2022;16:14230-8.
106. Uzun S, Seyedin S, Stoltzfus AL, et al. Knittable and washable multifunctional MXene-coated cellulose yarns. Adv Funct Mater 2019;29:1905015.
107. Yu A, Wang W, Li Z, Liu X, Zhang Y, Zhai J. Large-scale smart carpet for self-powered fall detection. Adv Mater Technol 2020;5:1900978.
108. Peng X, Dong K, Ning C, et al. All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea-hypopnea syndrome diagnosing. Adv Funct Mater 2021;31:2103559.
109. Yang W, Gong W, Hou C, et al. All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability. Nat Commun 2019;10:5541.
110. Zhang JH, Li Z, Xu J, et al. Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat Commun 2022;13:5839.
111. Gong W, Wang X, Yang W, et al. Wicking-polarization-induced water cluster size effect on triboelectric evaporation textiles. Adv Mater 2021;33:e2007352.
112. Guo Y, Li H, Li Y, et al. Wearable hybrid device capable of interactive perception with pressure sensing and visualization. Adv Funct Mater 2022;32:2203585.
113. Zhang Y, Yang J, Hou X, et al. Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nat Commun 2022;13:1317.
114. Niu H, Gao S, Yue W, Li Y, Zhou W, Liu H. Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure. Small 2020;16:e1904774.
115. Duan S, Lin Y, Wang Z, et al. Conductive porous MXene for bionic, wearable, and precise gesture motion sensors. Research 2021;2021:9861467.
116. Shi X, Fan X, Zhu Y, et al. Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nat Commun 2022;13:1119.
117. Gou GY, Li XS, Jian JM, et al. Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum. Sci Adv 2022;8:eabn2156.
118. Jung YH, Hong SK, Wang HS, et al. Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv Mater 2020;32:e1904020.
119. Park J, Kang DH, Chae H, et al. Frequency-selective acoustic and haptic smart skin for dual-mode dynamic/static human-machine interface. Sci Adv 2022;8:eabj9220.
120. Kim DW, Kim H, Hwang G, et al. Conformably skin-adherent piezoelectric patch with bioinspired hierarchically arrayed microsuckers enables physical energy amplification. ACS Energy Lett 2022;7:1820-7.
121. Luo J, Gao W, Wang ZL. The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv Mater 2021;33:e2004178.
122. Qu X, Liu Z, Tan P, et al. Artificial tactile perception smart finger for material identification based on triboelectric sensing. Sci Adv 2022;8:eabq2521.
123. Yin L, Cao M, Kim KN, et al. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat Electron 2022;5:694-705.
124. Wang M, Yang Y, Min J, et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat Biomed Eng 2022;6:1225-35.
125. Sempionatto JR, Lasalde-ramírez JA, Mahato K, Wang J, Gao W. Wearable chemical sensors for biomarker discovery in the omics era. Nat Rev Chem 2022;6:899-915.
126. Zhang T, Ding Y, Hu C, et al. Self-powered stretchable sensor arrays exhibiting magnetoelasticity for real-time human-machine interaction. Adv Mater 2022:e2203786.
127. Zhao Y, Gao S, Zhang X, et al. Fully flexible electromagnetic vibration sensors with annular field confinement origami magnetic membranes. Adv Funct Mater 2020;30:2001553.
128. Chen K, Li Y, Du Z, et al. CoFe2O4 embedded bacterial cellulose for flexible, biodegradable, and self-powered electromagnetic sensor. Nano Energy 2022;102:107740.
129. Chen L, Chen C, Jin L, et al. Stretchable negative Poisson’s ratio yarn for triboelectric nanogenerator for environmental energy harvesting and self-powered sensor. Energy Environ Sci 2021;14:955-64.
130. Anwar S, Hassanpour Amiri M, Jiang S, Abolhasani MM, Rocha PRF, Asadi K. Piezoelectric nylon-11 fibers for electronic textiles, energy harvesting and sensing. Adv Funct Mater 2021;31:2004326.
131. Cherenack K, Zysset C, Kinkeldei T, Münzenrieder N, Tröster G. Woven electronic fibers with sensing and display functions for smart textiles. Adv Mater 2010;22:5178-82.
132. Yin F, Yang J, Peng H, Yuan W. Flexible and highly sensitive artificial electronic skin based on graphene/polyamide interlocking fabric. J Mater Chem C 2018;6:6840-6.
133. Song Y, Huang W, Mu C, et al. Carbon nanotube-modified fabric for wearable smart electronic-skin with exclusive normal-tangential force sensing ability. Adv Mater Technol 2019;4:1800680.
134. Yu Q, Su C, Bi S, et al. Ti3C2Tx@nonwoven fabric composite: promising MXene-coated fabric for wearable piezoresistive pressure sensors. ACS Appl Mater Interf 2022;14:9632-43.
135. Atalay O, Kennon WR, Husain MD. Textile-based weft knitted strain sensors: effect of fabric parameters on sensor properties. Sensors 2013;13:11114-27.
136. Cai G, Yang M, Xu Z, Liu J, Tang B, Wang X. Flexible and wearable strain sensing fabrics. Chem Eng J 2017;325:396-403.
137. Husain MD, Kennon R, Dias T. Design and fabrication of temperature sensing fabric. J Ind Text 2014;44:398-417.
138. Xing H, Li X, Lu Y, et al. MXene/MWCNT electronic fabric with enhanced mechanical robustness on humidity sensing for real-time respiration monitoring. Sens Actuators B Chem 2022;361:131704.
139. Rauf S, Vijjapu MT, Andrés MA, et al. Highly selective metal-organic framework textile humidity sensor. ACS Appl Mater Interf 2020;12:29999-30006.
140. Ma L, Wu R, Patil A, et al. Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv Funct Mater 2019;29:1904549.
141. Nan N, He J, You X, et al. A stretchable, highly sensitive, and multimodal mechanical fabric sensor based on electrospun conductive nanofiber yarn for wearable electronics. Adv Mater Technol 2019;4:1800338.
142. Ge J, Sun L, Zhang FR, et al. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties. Adv Mater 2016;28:722-8.
143. Kim T, Park C, Samuel EP, et al. Supersonically sprayed washable, wearable, stretchable, hydrophobic, and antibacterial rGO/AgNW fabric for multifunctional sensors and supercapacitors. ACS Appl Mater Interf 2021;13:10013-25.
144. Zhou Z, Chen K, Li X, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron 2020;3:571-8.
145. Cheng B, Wu P. Scalable fabrication of kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano 2021;15:8676-85.
146. Wu R, Ma L, Hou C, et al. Silk composite electronic textile sensor for high space precision 2D combo temperature-pressure sensing. Small 2019;15:e1901558.
147. Yang S, Li C, Wen N, et al. All-fabric-based multifunctional textile sensor for detection and discrimination of humidity, temperature, and strain stimuli. J Mater Chem C 2021;9:13789-98.
148. Su Y, Chen C, Pan H, et al. Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring. Adv Funct Mater 2021;31:2010962.
149. Chen J, Zhang J, Hu J, et al. Ultrafast-response/recovery flexible piezoresistive sensors with DNA-like double helix yarns for epidermal pulse monitoring. Adv Mater 2022;34:e2104313.
150. Kim SJ, Kim H, Ahn J, et al. A new architecture for fibrous organic transistors based on a double-stranded assembly of electrode microfibers for electronic textile applications. Adv Mater 2019;31:e1900564.
151. Lee HJ, Hwang SH, Yoon HN, Lee WK, Park KS. Heart rate variability monitoring during sleep based on capacitively coupled textile electrodes on a bed. Sensors 2015;15:11295-311.
152. Bashir T, Ali M, Persson N, Ramamoorthy SK, Skrifvars M. Stretch sensing properties of conductive knitted structures of PEDOT-coated viscose and polyester yarns. Text Res J 2014;84:323-34.
153. Jin H, Matsuhisa N, Lee S, Abbas M, Yokota T, Someya T. Enhancing the performance of stretchable conductors for e-textiles by controlled ink permeation. Adv Mater 2017;29:1605848.
154. Kim R, Cho G. Effectiveness of the smart healthcare glove system for elderly persons with hypertension: healthcare system for the elderly. Hum Factors Man 2013;23:198-212.
155. Meng K, Zhao S, Zhou Y, et al. A wireless textile-based sensor system for self-powered personalized health care. Matter 2020;2:896-907.
156. Chen G, Zhao X, Andalib S, et al. Discovering giant magnetoelasticity in soft matter for electronic textiles. Matter 2021;4:3725-40.
157. Gi SO, Lee YJ, Koo HR, et al. Application of a textile-based inductive sensor for the vital sign monitoring. J Electr Eng Technol 2015;10:364-71.
158. Wicaksono I, Tucker CI, Sun T, et al. A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo. NPJ Flex Electron 2020:4.
159. Liu M, Pu X, Jiang C, et al. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv Mater 2017;29:1703700.
160. Jeong H, Rogers JA, Xu S. Continuous on-body sensing for the COVID-19 pandemic: gaps and opportunities. Sci Adv 2020:6.
161. Dong J, Wang D, Peng Y, et al. Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. Nano Energy 2022;97:107160.
162. Parrilla M, Cánovas R, Jeerapan I, Andrade FJ, Wang J. A textile-based stretchable multi-ion potentiometric sensor. Adv Healthc Mater 2016;5:996-1001.
163. Wang L, Wang L, Zhang Y, et al. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv Funct Mater 2018;28:1804456.
164. Wang L, Xie S, Wang Z, et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat Biomed Eng 2020;4:159-71.
165. Zhao Z, Li Q, Chen L, et al. A thread/fabric-based band as a flexible and wearable microfluidic device for sweat sensing and monitoring. Lab Chip 2021;21:916-32.
166. Zhao Z, Li Q, Dong Y, Gong J, Li Z, Zhang J. Core-shell structured gold nanorods on thread-embroidered fabric-based microfluidic device for Ex Situ detection of glucose and lactate in sweat. Sens Actuators B Chem 2022;353:131154.
167. Coppedè N, Tarabella G, Villani M, Calestani D, Iannotta S, Zappettini A. Human stress monitoring through an organic cotton-fiber biosensor. J Mater Chem B 2014;2:5620-6.
168. Gao Z, Lou Z, Chen S, et al. Fiber gas sensor-integrated smart face mask for room-temperature distinguishing of target gases. Nano Res 2018;11:511-9.
169. Gualandi I, Marzocchi M, Achilli A, Cavedale D, Bonfiglio A, Fraboni B. Textile organic electrochemical transistors as a platform for wearable biosensors. Sci Rep 2016;6:33637.
170. Wu R, Ma L, Patil A, et al. Graphene decorated carbonized cellulose fabric for physiological signal monitoring and energy harvesting. J Mater Chem A 2020;8:12665-73.
171. Zhang X, Tang S, Ma R, et al. High-performance multimodal smart textile for artificial sensation and health monitoring. Nano Energy 2022;103:107778.
172. Jin H, Nayeem MOG, Lee S, et al. Highly durable nanofiber-reinforced elastic conductors for skin-tight electronic textiles. ACS Nano 2019;13:7905-12.
173. Kapoor A, Mcknight M, Chatterjee K, et al. Toward fully manufacturable, fiber assembly-based concurrent multimodal and multifunctional sensors for e-textiles. Adv Mater Technol 2019;4:1800281.
174. Gao W, Emaminejad S, Nyein HYY, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016;529:509-14.
175. Kim D, Kim D, Lee H, et al. Body-attachable and stretchable multisensors integrated with wirelessly rechargeable energy storage devices. Adv Mater 2016;28:748-56.
176. Tang X, Wu C, Zhang T, et al. A low-cost polyaniline@textile-based multifunctional sensor for simultaneously detecting tactile and olfactory stimuli. Macromol Mater Eng 2018;303:1800340.
177. Zhou Y, Zhao X, Xu J, et al. Giant magnetoelastic effect in soft systems for bioelectronics. Nat Mater 2021;20:1670-6.
178. Fang Y, Zou Y, Xu J, et al. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv Mater 2021;33:e2104178.
179. Homayounfar SZ, Rostaminia S, Kiaghadi A, et al. Multimodal smart eyewear for longitudinal eye movement tracking. Matter 2020;3:1275-93.
180. Zhao X, Zhou Y, Xu J, et al. Soft fibers with magnetoelasticity for wearable electronics. Nat Commun 2021;12:6755.
181. Wei Y, Li X, Wang Y, et al. Graphene-based multifunctional textile for sensing and actuating. ACS Nano 2021;15:17738-47.
182. Li Y, Miao X, Chen JY, Jiang G, Liu Q. Sensing performance of knitted strain sensor on two-dimensional and three-dimensional surfaces. Mater Des 2021;197:109273.
183. Luo Y, Li Y, Sharma P, et al. Learning human-environment interactions using conformal tactile textiles. Nat Electron 2021;4:193-201.
184. Yue X, Jia Y, Wang X, et al. Highly stretchable and durable fiber-shaped strain sensor with porous core-sheath structure for human motion monitoring. Compos Sci Technol 2020;189:108038.
185. Sharma S, Chhetry A, Maharjan P, et al. Polyaniline-nanospines engineered nanofibrous membrane based piezoresistive sensor for high-performance electronic skins. Nano Energy 2022;95:106970.
186. Hu X, Tian M, Xu T, et al. Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear. ACS Nano 2020;14:559-67.
187. Lan B, Wu F, Cheng Y, et al. Scalable, stretchable and washable triboelectric fibers for self-powering human-machine interaction and cardiopulmonary resuscitation training. Nano Energy 2022;102:107737.
188. Li S, Cao P, Li F, et al. Self-powered stretchable strain sensors for motion monitoring and wireless control. Nano Energy 2022;92:106754.
189. Ding T, Chan KH, Zhou Y, et al. Scalable thermoelectric fibers for multifunctional textile-electronics. Nat Commun 2020;11:6006.
190. Duan S, Lin Y, Zhang C, et al. Machine-learned, waterproof MXene fiber-based glove platform for underwater interactivities. Nano Energy 2022;91:106650.
191. Duan S, Wang J, Lin Y, et al. Highly durable machine-learned waterproof electronic glove based on low-cost thermal transfer printing for amphibious wearable applications. Nano Res 2022; doi: 10.1007/s12274-022-5077-9.
192. Dong B, Yang Y, Shi Q, et al. Wearable triboelectric-human-machine interface (THMI) using robust nanophotonic readout. ACS Nano 2020;14:8915-30.
193. Liu Z, Li Z, Yi Y, et al. Flexible strain sensing percolation networks towards complicated wearable microclimate and multi-direction mechanical inputs. Nano Energy 2022;99:107444.
194. Veeramuthu L, Cho C, Venkatesan M, et al. Muscle fibers inspired electrospun nanostructures reinforced conductive fibers for smart wearable optoelectronics and energy generators. Nano Energy 2022;101:107592.
195. Wu R, Seo S, Ma L, Bae J, Kim T. Full-fiber auxetic-interlaced yarn sensor for sign-language translation glove assisted by artificial neural network. Nanomicro Lett 2022;14:139.
196. Yang W, Gong W, Gu W, et al. Self-powered interactive fiber electronics with visual-digital synergies. Adv Mater 2021;33:e2104681.
197. Zhang L, He J, Liao Y, et al. A self-protective, reproducible textile sensor with high performance towards human-machine interactions. J Mater Chem A 2019;7:26631-40.
198. Bai Z, He T, Zhang Z, et al. Constructing highly tribopositive elastic yarn through interfacial design and assembly for efficient energy harvesting and human-interactive sensing. Nano Energy 2022;94:106956.
199. Yang Y, Shi Q, Zhang Z, Shan X, Salam B, Lee C. Robust triboelectric information-mat enhanced by multi-modality deep learning for smart home. InfoMat 2023:5.
200. Zhu M, Sun Z, Zhang Z, et al. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci Adv 2020;6:eaaz8693.
201. Sun Z, Zhu M, Zhang Z, et al. Artificial intelligence of things (AIoT) enabled virtual shop applications using self-powered sensor enhanced soft robotic manipulator. Adv Sci 2021;8:e2100230.
202. Shi Q, Zhang Z, Yang Y, Shan X, Salam B, Lee C. Artificial intelligence of things (AIoT) enabled floor monitoring system for smart home applications. ACS Nano 2021;15:18312-26.
203. Ma S, Wang X, Li P, et al. Optical micro/nano fibers enabled smart textiles for human-machine interface. Adv Fiber Mater 2022;4:1108-17.
204. Wen F, Zhang Z, He T, Lee C. AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove. Nat Commun 2021;12:5378.
205. Wen F, Sun Z, He T, et al. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv Sci 2020;7:2000261.
206. Choi S, Yoon K, Lee S, et al. Conductive hierarchical hairy fibers for highly sensitive, stretchable, and water-resistant multimodal gesture-distinguishable sensor, VR applications. Adv Funct Mater 2019;29:1905808.
207. Dong B, Shi Q, Yang Y, Wen F, Zhang Z, Lee C. Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy 2021;79:105414.
208. Zhang Z, Shi Q, He T, et al. Artificial intelligence of toilet (AI-Toilet) for an integrated health monitoring system (IHMS) using smart triboelectric pressure sensors and image sensor. Nano Energy 2021;90:106517.
209. Shi Q, Zhang Z, He T, et al. Deep learning enabled smart mats as a scalable floor monitoring system. Nat Commun 2020;11:4609.
210. Zhao Y, Li X, Hou N, et al. Self-powered sensor integration system based on thorn-like polyaniline composites for smart home applications. Nano Energy 2022;104:107966.
211. Xu F, Dong S, Liu G, et al. Scalable fabrication of stretchable and washable textile triboelectric nanogenerators as constant power sources for wearable electronics. Nano Energy 2021;88:106247.
212. He E, Sun Y, Wang X, et al. 3D angle-interlock woven structural wearable triboelectric nanogenerator fabricated with silicone rubber coated graphene oxide/cotton composite yarn. Compos B Eng 2020;200:108244.
213. Ma L, Wu R, Liu S, et al. A machine-fabricated 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue. Adv Mater 2020;32:e2003897.
214. Niu L, Peng X, Chen L, et al. Industrial production of bionic scales knitting fabric-based triboelectric nanogenerator for outdoor rescue and human protection. Nano Energy 2022;97:107168.
215. Zhang H, Yin F, Shang S, et al. A high-performance, biocompatible, and degradable piezoresistive-triboelectric hybrid device for cross-scale human activities monitoring and self-powered smart home system. Nano Energy 2022;102:107687.
216. Chen M, Ouyang J, Jian A, et al. Imperceptible, designable, and scalable braided electronic cord. Nat Commun 2022;13:7097.
217. Fu M, Zhang J, Jin Y, Zhao Y, Huang S, Guo CF. A highly sensitive, reliable, and high-temperature-resistant flexible pressure sensor based on ceramic nanofibers. Adv Sci 2020;7:2000258.
218. Niu H, Yin F, Kim E, et al. Advances in flexible sensors for intelligent perception system enhanced by artificial intelligence. InfoMat ;2023:e12412.
219. Zhu M, Ji S, Luo Y, et al. A mechanically interlocking strategy based on conductive microbridges for stretchable electronics. Adv Mater 2022;34:e2101339.
220. Yuan Z, Han S, Gao W, Pan C. Flexible and stretchable strategies for electronic skins: materials, structure, and integration. ACS Appl Electron Mater 2022;4:1-26.
221. Zhao C, Wang Y, Tang G, et al. Ionic flexible sensors: mechanisms, materials, structures, and applications. Adv Funct Mater 2022;32:2110417.
222. Yao S, Ren P, Song R, et al. Nanomaterial-enabled flexible and stretchable sensing systems: processing, integration, and applications. Adv Mater 2020;32:e1902343.
223. Wang T, Shen Y, Chen L, et al. Large-scale production of the 3D warp knitted terry fabric triboelectric nanogenerators for motion monitoring and energy harvesting. Nano Energy 2023;109:108309.
224. Duan S, Wang B, Lin Y, et al. Waterproof mechanically robust multifunctional conformal sensors for underwater interactive human-machine interfaces. Adv Intell Syst 2021;3:2100056.
225. Yang Y, Wei X, Zhang N, et al. A non-printed integrated-circuit textile for wireless theranostics. Nat Commun 2021;12:4876.
226. de Medeiros M, Goswami D, Chanci D, Moreno C, Martinez RV. Washable, breathable, and stretchable e-textiles wirelessly powered by omniphobic silk-based coils. Nano Energy 2021;87:106155.
227. Praveen S, Sim GS, Ho CW, Lee CW. 3D-printed twisted yarn-type Li-ion battery towards smart fabrics. Energy Stor Mater 2021;41:748-57.
228. Li D, Yang S, Chen X, Lai W, Huang W. 3D wearable fabric-based micro-supercapacitors with ultra-high areal capacitance. Adv Funct Mater 2021;31:2107484.
229. Rafique A, Ferreira I, Abbas G, Baptista AC. Recent advances and challenges toward application of fibers and textiles in integrated photovoltaic energy storage devices. Nanomicro Lett 2023;15:40.
230. Duan S, Shi Q, Wu J. Multimodal sensors and ML-based data fusion for advanced robots. Adv Intell Syst 2022;4:2200213.
231. Zhu M, He T, Lee C. Technologies toward next generation human machine interfaces: From machine learning enhanced tactile sensing to neuromorphic sensory systems. Appl Phys Rev 2020;7:031305.