REFERENCES
1. Maurya D, Khaleghian S, Sriramdas R, et al. 3D printed graphene-based self-powered strain sensors for smart tires in autonomous vehicles. Nat Commun 2020;11:5392.
2. Xiong Y, Tuononen A. A laser-based sensor system for tire tread deformation measurement. Meas Sci Technol 2014;25:115103.
3. Xiong Y, Yang X. A review on in-tire sensor systems for tire-road interaction studies. SR 2018;38:231-8.
4. Zhang J, Wang C, Xie X, Li M, Li L, Mao X. Development of MEMS composite sensor with temperature compensation for tire pressure monitoring system. J Micromech Microeng 2021;31:125015.
5. Boada M, Lazaro A, Villarino R, Gil-dolcet E, Girbau D. Battery-less NFC bicycle tire pressure sensor based on a force-sensing resistor. IEEE Access 2021;9:103975-87.
6. Wang C, Taylor BD. SansEC temperature sensor for tire safety monitoring application. 2011 Future of Instrumentation International Workshop (FIIW) Proceedings. IEEE ;2011:146-9.
7. Mendoza-Petit MF, García-Pozuelo D, Díaz V, Olatunbosun O. A strain-based intelligent tire to detect contact patch features for complex maneuvers. Sensors 2020;20:1750.
8. Agliullin TA, Gubaidullin RR, Morozov OG, Sahabutdinov A, Ivanov V. Tire strain measurement system based on addressed FBG-structures. 2019 Systems of Signals Generating and Processing in the Field of on Board Communications. IEEE 2019:1-5.
9. Agliullin TA, Gubaidullin RR, Ivanov V, Morozov O, Sakhabutdinov A. Addressed FBG-structures for tire strain measurement. Optical Technologies for Telecommunications 2018. SPIE 2019;11146:392-7.
10. Sui Z, Wang Z, Zhang X, et al. Piezoelectric based smart tire for vehicle speed and load detection and energy harvesting. 2021 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). IEEE ;2021:1-4.
11. Andrews JB, Cardenas JA, Lim CJ, Noyce SG, Mullett J, Franklin AD. Fully printed and flexible carbon nanotube transistors for pressure sensing in automobile tires. IEEE Sensors J 2018;18:7875-80.
12. Wang Y, Hu J, Wang F, et al. Tire road friction coefficient estimation: review and research perspectives. Chin J Mech Eng 2022:35.
13. Leng B, Jin D, Xiong L, Yang X, Yu Z. Estimation of tire-road peak adhesion coefficient for intelligent electric vehicles based on camera and tire dynamics information fusion. Mech Syst Signal Pr 2021;150:107275.
14. Tian C, Leng B, Hou X, Xiong L, Huang C. Multi-sensor fusion based estimation of tire-road peak adhesion coefficient considering model uncertainty. Remote Sens 2022;14:5583.
15. Formentin S, Onesto L, Colombo T, Pozzato A, Savaresi SM. h-TPMS: a hybrid tire pressure monitoring system for road vehicles. Mechatronics 2021;74:102492.
16. Lee D, Yoon D, Kim G. New indirect tire pressure monitoring system enabled by adaptive extended kalman filtering of vehicle suspension systems. Electronics 2021;10:1359.
17. Kim H, Han J, Lee S, et al. A road condition classification algorithm for a tire acceleration sensor using an artificial neural network. Electronics 2020;9:404.
18. Gu T, Li B, Quan Z, et al. The vertical force estimation algorithm based on smart tire technology. WEVJ 2022;13:104.
19. Fontaine M, Coiret A, Cesbron J, Baltazart V, Bétaille D. In-tire distributed optical fiber (DOF) sensor for the load assessment of light vehicles in static conditions. Sensors 2021;21:6874.
20. Kim M, Park J, Choi S. Road type identification ahead of the tire using D-CNN and reflected ultrasonic signals. Int J Automot Technol 2021;22:47-54.
21. Erdogan G, Alexander L, Rajamani R. A novel wireless piezoelectric tire sensor for the estimation of slip angle. Meas Sci Technol 2010;21:015201.
22. den Ende DA, van de Wiel HJ, Groen WA, van der Zwaag S. Direct strain energy harvesting in automobile tires using piezoelectric PZT-polymer composites. Smart Mater Struct 2012;21:015011.
23. Jeong D, Lee J, Choi S, Kim M. Load estimation of intelligent tires equipped with acceleration sensors. 2019 IEEE Sensors Applications Symposium (SAS). IEEE ;2019:1-5.
24. Pohl A, Ostermayer G, Reindl L, Seifert F. Monitoring the tire pressure at cars using passive SAW sensors. 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No. 97CH36118). IEEE 1997;1:471-4.
25. Tuononen AJ. Laser triangulation to measure the carcass deflections of a rolling tire. Meas Sci Technol 2011;22:125304.
26. Gao Y, Yu L, Yeo JC, Lim CT. Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv Mater 2020;32:e1902133.
27. Zhang Y, Zhang F, Yan Z, et al. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat Rev Mater 2017:2.
28. Ma Y, Choi J, Hourlier-Fargette A, et al. Relation between blood pressure and pulse wave velocity for human arteries. Proc Natl Acad Sci USA 2018;115:11144-9.
29. Carvalho AF, Fernandes AJS, Martins R, Fortunato E, Costa FM. Laser-induced graphene piezoresistive sensors synthesized directly on cork insoles for gait analysis. Adv Mater Technol 2020;5:2000630.
30. Yan D, Chang J, Zhang H, et al. Soft three-dimensional network materials with rational bio-mimetic designs. Nat Commun 2020;11:1180.
31. Bai K, Cheng X, Xue Z, et al. Geometrically reconfigurable 3D mesostructures and electromagnetic devices through a rational bottom-up design strategy. Sci Adv 2020;6:eabb7417.
32. Ma Q, Zhang Y. Mechanics of fractal-inspired horseshoe microstructures for applications in stretchable electronics. J Appl Mech 2016;83:111008.
33. Dal H, Açıkgöz K, Badienia Y. On the performance of isotropic hyperelastic constitutive models for rubber-like materials: a state of the art review. Appl Mech Rev 2021;73:020802.
34. Liu T, Asheghi M, Goodson KE. Performance and manufacturing of silicon-based vapor chambers. Appl Mech Rev 2021;73:010802.
35. Firooz S, Steinmann P, Javili A. Homogenization of composites with extended general interfaces: comprehensive review and unified modeling. Appl Mech Rev 2021;73:040802.
36. Zhang C, Peng Z, Huang C, et al. High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems. Nano Energy 2021;81:105609.
37. Araujo WR, Frasson CMR, Ameku WA, Silva JR, Angnes L, Paixão TRLC. Single-step reagentless laser scribing fabrication of electrochemical paper-based analytical devices. Angew Chem Int Ed Engl 2017;56:15113-7.
38. Santos NF, Rodrigues J, Pereira SO, Fernandes AJS, Monteiro T, Costa FM. Electrochemical and photoluminescence response of laser-induced graphene/electrodeposited ZnO composites. Sci Rep 2021;11:17154.
39. Carvalho AF, Kulyk B, Fernandes AJS, Fortunato E, Costa FM. A review on the applications of graphene in mechanical transduction. Adv Mater 2022;34:e2101326.
40. Romero FJ, Salinas-Castillo A, Rivadeneyra A, et al. In-depth study of laser diode ablation of kapton polyimide for flexible conductive substrates. Nanomaterials 2018;8:517.
41. Ehsani H, Boyd JD, Wang J, Grady ME. Evolution of the laser-induced spallation technique in film adhesion measurement. Appl Mech Rev 2021;73:030802.
42. Lin J, Peng Z, Liu Y, et al. Laser-induced porous graphene films from commercial polymers. Nat Commun 2014;5:5714.
43. Rodriguez RD, Shchadenko S, Murastov G, et al. Ultra-robust flexible electronics by laser-driven polymer-nanomaterials integration. Adv Funct Mater 2021;31:2008818.
44. Cao L, Zhu S, Pan B, et al. Stable and durable laser-induced graphene patterns embedded in polymer substrates. Carbon 2020;163:85-94.
45. Wang H, Wang H, Wang Y, et al. Laser writing of Janus graphene/Kevlar textile for intelligent protective clothing. ACS Nano 2020;14:3219-26.
46. Li Z, Lu L, Xie Y, et al. Preparation of laser-induced graphene fabric from silk and its application examples for flexible sensor. Adv Eng Mater 2021;23:2100195.
47. Kulyk B, Matos M, Silva BF, et al. Conversion of paper and xylan into laser-induced graphene for environmentally friendly sensors. Diam Relat Mater 2022;123:108855.
48. Mendes LF, Pradela-filho LA, Paixão TR. Polyimide adhesive tapes as a versatile and disposable substrate to produce CO2 laser-induced carbon sensors for batch and microfluidic analysis. Microchem J 2022;182:107893.
49. Getachew BA, Bergsman DS, Grossman JC. Laser-induced graphene from polyimide and polyethersulfone precursors as a sensing electrode in anodic stripping voltammetry. ACS Appl Mater Interf 2020;12:48511-7.
50. Martins L, Kulyk B, Theodosiou A, et al. Laser-induced graphene from commercial polyimide coated optical fibers for sensor development. Opt Laser Technol 2023;160:109047.
51. Kulyk B, Silva BFR, Carvalho AF, et al. Laser-induced graphene from paper for mechanical sensing. ACS Appl Mater Interf 2021;13:10210-21.
52. Sun B, McCay RN, Goswami S, et al. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv Mater 2018;30:e1804327.
53. Dallinger A, Keller K, Fitzek H, Greco F. Stretchable and skin-conformable conductors based on polyurethane/laser-induced graphene. ACS Appl Mater Interf 2020;12:19855-65.