REFERENCES

1. Conti J. Annual energy outlook 2013 with projections to 2040. technical report DOE/EIA-0383. Washington, DC, USA: The U.S. Energy Information Administration, 2013.

2. Bai J, Huang Y, Cheng H, Qu L. Moist-electric generation. Nanoscale 2019;11:23083-91.

3. Quickenden TI, Mua Y. A review of power generation in aqueous thermogalvanic cells. J Electrochem Soc 1995;142:3985-94.

4. Wichterle O, Lim D. Hydrophilic gels for biological use. Nature 1960;185:117-8.

5. Guo Y, Bae J, Fang Z, Li P, Zhao F, Yu G. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem Rev 2020;120:7642-707.

6. Wang H, Sun Y, He T, et al. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nat Nanotechnol 2021;16:811-9.

7. Li T, Zhang X, Lacey SD, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat Mater 2019;18:608-13.

8. Liu C, Li Q, Wang S, Liu W, Fang NX, Feng S. Ion regulation in double-network hydrogel module with ultrahigh thermopower for low-grade heat harvesting. Nano Energy 2022;92:106738.

9. Liu C, Wang S, Wang X, et al. Hydrovoltaic energy harvesting from moisture flow using an ionic polymer-hydrogel-carbon composite. Energy Environ Sci 2022;15:2489-98.

10. Meng FL, Gao M, Ding T, Yilmaz G, Ong WL, Ho GW. Modular deformable steam electricity cogeneration system with photothermal, water, and electrochemical tunable multilayers. Adv Funct Mater 2020;30:2002867.

11. Li L, Feng S, Bai Y, et al. Enhancing hydrovoltaic power generation through heat conduction effects. Nat Commun 2022;13:1043.

12. Forman C, Muritala IK, Pardemann R, Meyer B. Estimating the global waste heat potential. Renew Sustain Energy Rev 2016;57:1568-79.

13. Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008;321:1457-61.

14. He J, Tritt TM. Advances in thermoelectric materials research: looking back and moving forward. Science 2017;357:eaak9997.

15. Cheng C, Dai Y, Yu J, et al. Review of liquid-based systems to recover low-grade waste heat for electrical energy generation. Energy Fuels 2021;35:161-75.

16. Yu B, Duan J, Cong H, et al. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science 2020;370:342-6.

17. Zhao D, Wang H, Khan ZU, et al. Ionic thermoelectric supercapacitors. Energy Environ Sci 2016;9:1450-7.

18. Han CG, Qian X, Li Q, et al. Giant thermopower of ionic gelatin near room temperature. Science 2020;368:1091-8.

19. Burrows B. Discharge behavior of redox thermogalvanic cells. J Electrochem Soc 1976;123:154-9.

20. Quickenden T, Vernon C. Thermogalvanic conversion of heat to electricity. Solar Energy 1986;36:63-72.

21. Mua Y, Quickenden TI. Power conversion efficiency, electrode separation, and overpotential in the ferricyanide/ferrocyanide thermogalvanic cell. J Electrochem Soc 1996;143:2558-64.

22. Gao C, Lee SW, Yang Y. Thermally regenerative electrochemical cycle for low-grade heat harvesting. ACS Energy Lett 2017;2:2326-34.

23. Ding Y, Guo X, Ramirez-meyers K, et al. Simultaneous energy harvesting and storage via solar-driven regenerative electrochemical cycles. Energy Environ Sci 2019;12:3370-9.

24. Yang Y, Loomis J, Ghasemi H, et al. Membrane-free battery for harvesting low-grade thermal energy. Nano Lett 2014;14:6578-83.

25. Liu Y, Gao C, Sim S, Kim M, Lee SW. Lithium manganese oxide in an aqueous electrochemical system for low-grade thermal energy harvesting. Chem Mater 2019;31:4379-84.

26. Cheng C, Wang S, Tan P, et al. Insights into the thermopower of thermally regenerative electrochemical cycle for low grade heat harvesting. ACS Energy Lett 2021;6:329-36.

27. Sales BB, Burheim OS, Porada S, Presser V, Buisman CJN, Hamelers HVM. Extraction of energy from small thermal differences near room temperature using capacitive membrane technology. Environ Sci Technol Lett 2014;1:356-60.

28. Lee SW, Yang Y, Lee HW, et al. An electrochemical system for efficiently harvesting low-grade heat energy. Nat Commun 2014;5:3942.

29. Zhu X, Rahimi M, Gorski CA, Logan B. A thermally-regenerative ammonia-based flow battery for electrical energy recovery from waste heat. ChemSusChem 2016;9:873-9.

30. Zhang F, Liu J, Yang W, Logan BE. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power. Energy Environ Sci 2015;8:343-9.

31. Cheng C, Wang S, Wu Y, et al. Thermally regenerative CO2-induced pH-gradient cell for waste-to-energy conversion. ACS Energy Lett 2021;6:3221-7.

32. Cheng C, Wang S, Wu Y, et al. pH-sensitive thermally regenerative cell (pH-TRC) with circulating hydrogen for long discharging time and high-power output. Chem Eng J 2022;449:137772.

33. Wang X, Huang YT, Liu C, et al. Direct thermal charging cell for converting low-grade heat to electricity. Nat Commun 2019;10:4151.

34. Mu K, Mu Y, Wang X, et al. Direct thermal charging cell using nickel hexacyanoferrate (ΙΙ) anode for green recycling of low-grade heat. ACS Energy Lett 2022;7:1146-53.

35. Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications, 2nd ed. New York: John Wiley & Sons; 2001. pp. 12-4. Available from: https://www.wiley.com/en-us/Electrochemical+Methods%3A+Fundamentals+and+Applications%2C+2nd+Edition-p-9780471043720 [Last accessed on 21 March 2023].

36. Ishay JS, Pertsis V, Rave E, Goren A, Bergman DJ. Natural thermoelectric heat pump in social wasps. Phys Rev Lett 2003;90:218102.

37. Brown BR, Hughes ME, Russo C. Thermoelectricity in natural and synthetic hydrogels. Phys Rev E Stat Nonlin Soft Matter Phys 2004;70:031917.

38. Siddique ARM, Mahmud S, Heyst BV. A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renew Sustain Energy Rev 2017;73:730-44.

39. Yang P, Liu K, Chen Q, et al. Wearable thermocells based on gel electrolytes for the utilization of body heat. Angew Chem Int Ed 2016;55:12050-3.

40. Fang Y, Cheng H, He H, et al. Stretchable and transparent ionogels with high thermoelectric properties. Adv Funct Mater 2020;30:2004699.

41. Lei Z, Gao W, Wu P. Double-network thermocells with extraordinary toughness and boosted power density for continuous heat harvesting. Joule 2021;5:2211-22.

42. Akbar ZA, Jeon J, Jang S. Intrinsically self-healable, stretchable thermoelectric materials with a large ionic Seebeck effect. Energy Environ Sci 2020;13:2915-23.

43. Hu R, Cola BA, Haram N, et al. Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett 2010;10:838-46.

44. Abraham TJ, MacFarlane DR, Pringle JM. Seebeck coefficients in ionic liquids--prospects for thermo-electrochemical cells. Chem Commun 2011;47:6260-2.

45. Liu C, Lee H, Chang YH, Feng SP. The study of electrical conductivity and diffusion behavior of water-based and ferro/ferricyanide-electrolyte-based alumina nanofluids. J Colloid Interface Sci 2016;469:17-24.

46. Poletayev AD, Mckay IS, Chueh WC, Majumdar A. Continuous electrochemical heat engines. Energy Environ Sci 2018;11:2964-71.

47. Kim JH, Lee JH, Palem RR, Suh MS, Lee HH, Kang TJ. Iron (II/III) perchlorate electrolytes for electrochemically harvesting low-grade thermal energy. Sci Rep 2019;9:8706.

48. Buckingham MA, Marken F, Aldous L. The thermoelectrochemistry of the aqueous iron(ii)/iron(iii) redox couple: significance of the anion and pH in thermogalvanic thermal-to-electrical energy conversion. Sustain Energy Fuels 2018;2:2717-26.

49. Taheri A, Macfarlane DR, Pozo-gonzalo C, Pringle JM. Application of a water-soluble cobalt redox couple in free-standing cellulose films for thermal energy harvesting. Electrochim Acta 2019;297:669-75.

50. Zhou H, Yamada T, Kimizuka N. Supramolecular thermo-electrochemical cells: enhanced thermoelectric performance by host-guest complexation and salt-induced crystallization. J Am Chem Soc 2016;138:10502-7.

51. Li X, Liu C, Feng S, Fang NX. Broadband light management with thermochromic hydrogel microparticles for smart windows. Joule 2019;3:290-302.

52. Duan J, Yu B, Liu K, et al. P-N conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting. Nano Energy 2019;57:473-9.

53. Han Y, Zhang J, Hu R, Xu D. High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting. Sci Adv 2022;8:eabl5318.

54. Im H, Moon HG, Lee JS, Chung IY, Kang TJ, Kim YH. Flexible thermocells for utilization of body heat. Nano Res 2014;7:443-52.

55. Wang Z, Li H, Tang Z, et al. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv Funct Mater 2018;28:1804560.

56. Jin L, Greene GW, Macfarlane DR, Pringle JM. Redox-active quasi-solid-state electrolytes for thermal energy harvesting. ACS Energy Lett 2016;1:654-8.

57. Ding T, Zhou Y, Wang X, et al. All-soft and stretchable thermogalvanic gel fabric for antideformity body heat harvesting wearable. Adv Energy Mater 2021;11:2102219.

58. Wang XQ, Chan KH, Lu W, et al. Macromolecule conformational shaping for extreme mechanical programming of polymorphic hydrogel fibers. Nat Commun 2022;13:3369.

59. Liu Z, Cheng H, Le Q, et al. Giant thermoelectric properties of ionogels with cationic doping. Adv Energy Mater 2022;12:2200858.

60. Agar JN, Mou CY, Lin JL. Single-ion heat of transport in electrolyte solutions: a hydrodynamic theory. J Phys Chem 1989;93:2079-82.

61. Eastman ED. Thermodynamics of non-isothermal systems. J Am Chem Soc 1926;48:1482-93.

62. Würger A. Thermal non-equilibrium transport in colloids. Rep Prog Phys 2010;73:126601.

63. Guthrie G, Wilson JN, Schomaker V. Theory of the thermal diffusion of electrolytes in a clusius column. J Chem Phys 1949;17:310-3.

64. Eastman ED. Theory of the soret effect. J Am Chem Soc 1928;50:283-91.

65. Marcus Y. Effect of ions on the structure of water: structure making and breaking. Chem Rev 2009;109:1346-70.

66. Kim SL, Hsu J, Yu C. Thermoelectric effects in solid-state polyelectrolytes. Org Electron 2018;54:231-6.

67. Wang H, Zhao D, Khan ZU, et al. Ionic thermoelectric figure of merit for charging of supercapacitors. Adv Electron Mater 2017;3:1700013.

68. Kim SL, Lin HT, Yu C. Thermally chargeable solid-state supercapacitor. Adv Energy Mater 2016;6:1600546.

69. Li L, Hao M, Yang X, et al. Sustainable and flexible hydrovoltaic power generator for wearable sensing electronics. Nano Energy 2020;72:104663.

70. Pu S, Liao Y, Chen K, et al. Thermogalvanic hydrogel for synchronous evaporative cooling and low-grade heat energy harvesting. Nano Lett 2020;20:3791-7.

71. Zhao D, Martinelli A, Willfahrt A, et al. Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles. Nat Commun 2019;10:1093.

72. Kim B, Hwang JU, Kim E. Chloride transport in conductive polymer films for an n-type thermoelectric platform. Energy Environ Sci 2020;13:859-67.

73. Chen Q, Chen B, Xiao S, et al. Giant thermopower of hydrogen ion enhanced by a strong hydrogen bond system. ACS Appl Mater Interfaces 2022;14:19304-14.

74. Haras M, Skotnicki T. Thermoelectricity for IoT - a review. Nano Energy 2018;54:461-76.

75. Cheng H, He X, Fan Z, Ouyang J. Flexible quasi-solid state ionogels with remarkable seebeck coefficient and high thermoelectric properties. Adv Energy Mater 2019;9:1901085.

76. Stephens GL, Li J, Wild M, et al. An update on Earth’s energy balance in light of the latest global observations. Nat Geosci 2012;5:691-6.

77. Yin J, Zhou J, Fang S, Guo W. Hydrovoltaic energy on the way. Joule 2020;4:1852-5.

78. Zhang Z, Li X, Yin J, et al. Emerging hydrovoltaic technology. Nat Nanotechnol 2018;13:1109-19.

79. Huang Y, Cheng H, Yang C, Yao H, Li C, Qu L. All-region-applicable, continuous power supply of graphene oxide composite. Energy Environ Sci 2019;12:1848-56.

80. Cheng H, Huang Y, Zhao F, et al. Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy Environ Sci 2018;11:2839-45.

81. Huang Y, Cheng H, Yang C, et al. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat Commun 2018;9:4166.

82. Yin J, Li X, Yu J, Zhang Z, Zhou J, Guo W. Generating electricity by moving a droplet of ionic liquid along graphene. Nat Nanotechnol 2014;9:378-83.

83. Yin J, Zhang Z, Li X, et al. Waving potential in graphene. Nat Commun 2014;5:3582.

84. Cai H, Guo Y, Guo W. Synergistic effect of substrate and ion-containing water in graphene based hydrovoltaic generators. Nano Energy 2021;84:105939.

85. Xue G, Xu Y, Ding T, et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat Nanotechnol 2017;12:317-21.

86. Li J, Liu K, Ding T, Yang P, Duan J, Zhou J. Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator. Nano Energy 2019;58:797-802.

87. Liu K, Ding T, Li J, et al. Thermal-electric nanogenerator based on the electrokinetic effect in porous carbon film. Adv Energy Mater 2018;8:1702481.

88. Zhao F, Cheng H, Zhang Z, Jiang L, Qu L. Direct power generation from a graphene oxide film under moisture. Adv Mater 2015;27:4351-7.

89. Yang C, Huang Y, Cheng H, Jiang L, Qu L. Rollable, stretchable, and reconfigurable graphene hygroelectric generators. Adv Mater 2019;31:e1805705.

90. Xu T, Ding X, Huang Y, et al. An efficient polymer moist-electric generator. Energy Environ Sci 2019;12:972-8.

91. Yang S, Tao X, Chen W, et al. Ionic hydrogel for efficient and scalable moisture-electric generation. Adv Mater 2022;34:2200693.

92. Xue J, Zhao F, Hu C, et al. Vapor-activated power generation on conductive polymer. Adv Funct Mater 2016;26:8784-92.

93. Pope M, Swenberg CE. Electronic processes in organic crystals and polymers. Oxford UK: Oxford University Press, 1999.

94. Ochi S, Kamishima O, Mizusaki J, Kawamura J. Investigation of proton diffusion in Nafion®117 membrane by electrical conductivity and NMR. Solid State Ion 2009;180:580-4.

95. Liu X, Gao H, Ward JE, et al. Power generation from ambient humidity using protein nanowires. Nature 2020;578:550-4.

96. Gouveia RF, Galembeck F. Electrostatic charging of hydrophilic particles due to water adsorption. J Am Chem Soc 2009;131:11381-6.

97. Zhang Y, Guo S, Yu ZG, et al. An asymmetric hygroscopic structure for moisture-driven hygro-ionic electricity generation and storage. Adv Mater 2022;34:e2201228.

98. Zhang Y, Yu Z, Qu H, et al. Self-sustained programmable hygro-electronic interfaces for humidity-regulated hierarchical information encryption and display. Adv Mater 2022:2208081.

99. Luo Z, Liu C, Fan S. A moisture induced self-charging device for energy harvesting and storage. Nano Energy 2019;60:371-6.

100. Li M, Zong L, Yang W, et al. Biological nanofibrous generator for electricity harvest from moist air flow. Adv Funct Mater 2019;29:1901798.

101. Das SS, Pedireddi VM, Bandopadhyay A, Saha P, Chakraborty S. Electrical power generation from wet textile mediated by spontaneous nanoscale evaporation. Nano Lett 2019;19:7191-200.

102. Xiao K, Jiang L, Antonietti M. Ion transport in nanofluidic devices for energy harvesting. Joule 2019;3:2364-80.

103. Zhou S, Qiu Z, Strømme M, Xu C. Solar-driven ionic power generation via a film of nanocellulose @ conductive metal-organic framework. Energy Environ Sci 2021;14:900-5.

104. Zhang Y, Sohn A, Chakraborty A, Yu C. Colossal thermo-hydro-electrochemical voltage generation for self-sustainable operation of electronics. Nat Commun 2021;12:5269.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/