REFERENCES
1. Lendlein A, Gould OEC. Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nat Rev Mater 2019;4:116-33.
2. Sun L, Huang W, Ding Z, et al. Stimulus-responsive shape memory materials: a review. Mater Des 2012;33:577-640.
3. Lei M, Chen Z, Lu H, Yu K. Recent progress in shape memory polymer composites: methods, properties, applications and prospects. Nanotechnol Rev 2019;8:327-51.
4. Wang YJ, Jeng US, Hsu SH. Biodegradable water-based polyurethane shape memory elastomers for bone tissue engineering. ACS Biomater Sci Eng 2018;4:1397-406.
5. Xue Y, Lei J, Liu Z. A thermodynamic constitutive model for shape memory polymers based on phase transition. Polymer 2022;243:124623.
6. Wang X, Lu H, Gorbacheva G, Hossain M, Fu YQ. Multi-modal commutative dynamics in semi-crystalline polymers undergoing multiple shape memory behavior. Smart Mater Struct 2021;30:045003.
7. Ramaraju H, Akman RE, Safranski DL, Hollister SJ. Designing biodegradable shape memory polymers for tissue repair. Adv Funct Mater 2020;30:2002014.
8. Li Z, Liu Y, Wang Y, Lu H, Lei M, Fu YQ. 3D printing of auxetic shape-memory metamaterial towards designable buckling. Int J Appl Mech 2021;13:2150011.
9. Liu R, Xu S, Luo X, Liu Z. Theoretical and numerical analysis of mechanical behaviors of a metamaterial-based shape memory polymer stent. Polymers 2020;12:1784.
10. Zhang D, Liu L, Xu P, et al. World’s first application of a self-deployable mechanism based on shape memory polymer composites in Mars explorations: ground-based validation and on-Mars qualification. Smart Mater Struct 2022;31:115008.
11. Xiao R, Huang WM. Heating/Solvent responsive shape-memory polymers for implant biomedical devices in minimally invasive surgery: current status and challenge. Macromol Biosci 2020;20:e2000108.
12. Delaey J, Dubruel P, Van Vlierberghe S. Shape-memory polymers for biomedical applications. Adv Funct Mater 2020;30:1909047.
13. Salaris V, Leonés A, Lopez D, Kenny JM, Peponi L. Shape-memory materials via electrospinning: a review. Polymers 2022;14:995.
14. Zhang B, Li H, Cheng J, et al. Mechanically robust and UV-curable shape-memory polymers for digital light processing based 4D printing. Adv Mater 2021;33:e2101298.
15. Bastola AK, Hossain M. The shape - morphing performance of magnetoactive soft materials. Mater Des 2021;211:110172.
16. Lin C, Lv J, Li Y, et al. 4D-Printed biodegradable and remotely controllable shape memory occlusion devices. Adv Funct Mater 2019;29:1906569.
17. Zhao D, Han C, Peng B, et al. Corrosion fatigue behavior and anti-fatigue mechanisms of an additively manufactured biodegradable zinc-magnesium gyroid scaffold. Acta Biomater 2022;153:614-29.
18. Sun S, Teng Q, Xie Y, et al. Two-step heat treatment for laser powder bed fusion of a nickel-based superalloy with simultaneously enhanced tensile strength and ductility. Addit Manuf 2021;46:102168.
19. Cai C, Qiu JCD, Shian TW, et al. Laser powder bed fusion of Mo2C/Ti-6Al-4V composites with alternately laminated α′/β phases for enhanced mechanical properties. Addit Manuf 2021;46:102134.
20. Zhao D, Liang H, Han C, et al. 3D printing of a titanium-tantalum Gyroid scaffold with superb elastic admissible strain, bioactivity and in-situ bone regeneration capability. Addit Manuf 2021;47:102223.
21. Wang K, Jia Y, Zhu XX. Two-way reversible shape memory polymers made of cross-linked cocrystallizable random copolymers with tunable actuation temperatures. Macromolecules 2017;50:8570-9.
22. Zare M, Prabhakaran MP, Parvin N, Ramakrishna S. Thermally-induced two-way shape memory polymers: mechanisms, structures, and applications. Chem Eng J 2019;374:706-20.
23. Chung T, Romo-uribe A, Mather PT. Two-way reversible shape memory in a semicrystalline network. Macromolecules 2008;41:184-92.
24. Behl M, Kratz K, Noechel U, Sauter T, Lendlein A. Temperature-memory polymer actuators. Proc Natl Acad Sci USA 2013;110:12555-9.
25. Song H, Fang Z, Jin B, Pan P, Zhao Q, Xie T. Synergetic chemical and physical programming for reversible shape memory effect in a dynamic covalent network with two crystalline phases. ACS Macro Lett 2019;8:682-6.
26. Wang Z, Wang Z, Zheng Y, He Q, Wang Y, Cai S. Three-dimensional printing of functionally graded liquid crystal elastomer. Sci Adv 2020;6.
27. Herbert KM, Fowler HE, Mccracken JM, Schlafmann KR, Koch JA, White TJ. Synthesis and alignment of liquid crystalline elastomers. Nat Rev Mater 2022;7:23-38.
28. Yakacki CM, Saed M, Nair DP, Gong T, Reed SM, Bowman CN. Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol-acrylate reaction. RSC Adv 2015;5:18997-9001.
29. Wen Z, Yang K, Raquez JM. A review on liquid crystal polymers in free-standing reversible shape memory materials. Molecules 2020;25:1241.
30. Fuchi K, Ware TH, Buskohl PR, et al. Topology optimization for the design of folding liquid crystal elastomer actuators. Soft Matter 2015;11:7288-95.
31. Roach DJ, Yuan C, Kuang X, et al. Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles. ACS Appl Mater Interfaces 2019;11:19514-21.
32. Wang Z, Guo Y, Cai S, Yang J. Three-dimensional printing of liquid crystal elastomers and their applications. ACS Appl Polym Mater 2022;4:3153-68.
33. Spillmann CM, Naciri J, Ratna BR, Selinger RL, Selinger JV. Electrically induced twist in smectic liquid-crystalline elastomers. J Phys Chem B 2016;120:6368-72.
34. Wang Z, He Q, Wang Y, Cai S. Programmable actuation of liquid crystal elastomers via “living” exchange reaction. Soft Matter 2019;15:2811-6.
35. Saed MO, Gablier A, Terentjev EM. Exchangeable liquid crystalline elastomers and their applications. Chem Rev 2022;122:4927-45.
36. Peng X, Wu S, Sun X, et al. 4D Printing of freestanding liquid crystal elastomers via hybrid additive manufacturing. Adv Mater 2022;34:e2204890.
37. Traugutt NA, Mistry D, Luo C, Yu K, Ge Q, Yakacki CM. Liquid-crystal-elastomer-based dissipative structures by digital light processing 3D printing. Adv Mater 2020;32:e2000797.
38. Saed MO, Torbati AH, Starr CA, Visvanathan R, Clark NA, Yakacki CM. Thiol-acrylate main-chain liquid-crystalline elastomers with tunable thermomechanical properties and actuation strain. J Polym Sci Part B Polym Phys 2017;55:157-68.
39. Chen G, Jin B, Shi Y, Zhao Q, Shen Y, Xie T. Rapidly and repeatedly reprogrammable liquid crystalline elastomer via a shape memory mechanism. Adv Mater 2022;34:e2201679.
40. Javed M, Corazao T, Saed MO, et al. Programmable shape change in semicrystalline liquid crystal elastomers. ACS Appl Mater Interfaces 2022;14:35087-96.
41. Kotikian A, Truby RL, Boley JW, White TJ, Lewis JA. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv Mater 2018;30:1706164.
42. Huang WM, Zhao Y, Wang CC, et al. Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals and optimization. J Polym Res 2012:19.
43. Linares CP, Traugutt NA, Saed MO, Martin Linares A, Yakacki CM, Nguyen TD. The effect of alignment on the rate-dependent behavior of a main-chain liquid crystal elastomer. Soft Matter 2020;16:8782-98.
44. Chen SJ, Hu JL, Chen SG, Zhang CL. Study on the structure and morphology of supramolecular shape memory polyurethane containing pyridine moieties. Smart Mater Struct 2011;20:065003.