1. Zhu M, He T, Lee C. Technologies toward next generation human machine interfaces: From machine learning enhanced tactile sensing to neuromorphic sensory systems. Appl Phys Rev 2020;7:031305.
2. Cao X, Xiong Y, Sun J, Zhu X, Sun Q, Wang ZL. Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and Artificial Intelligence. Adv Funct Mater 2021;31:2102983.
3. Hua Q, Cui X, Ji K, Wang B, Hu W. Piezotronics enabled artificial intelligence systems. J Phys Mater 2021;4:022003.
4. Yin R, Wang D, Zhao S, Lou Z, Shen G. Wearable sensors-enabled human machine interaction systems: from design to application. Adv Funct Mater 2021;31:2008936.
5. Araromi OA, Graule MA, Dorsey KL, et al. Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature 2020;587:219-24.
6. Lee S, Shi Q, Lee C. From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks. APL Mater 2019;7:031302.
7. Ma M, Zhang Z, Liao Q, et al. Self-powered artificial electronic skin for high-resolution pressure sensing. Nano Energy 2017;32:389-96.
8. Yi Z, Liu Z, Li W, et al. Piezoelectric dynamics of arterial pulse for wearable continuous blood pressure monitoring. Adv Mater 2022;34:e2110291.
9. Zheng Q, Shi B, Li Z, Wang ZL. Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems. Adv Sci 2017;4:1700029.
10. Park DY, Joe DJ, Kim DH, et al. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv Mater 2017;29:1702308.
11. Rao Z, Ershad F, Almasri A, Gonzalez L, Wu X, Yu C. Soft electronics for the skin: from health monitors to human-machine interfaces. Adv Mater Technol 2020;5:2000233.
12. Kim N, Lee JM, Moradnia M, et al. Biocompatible composite thin-film wearable piezoelectric pressure sensor for monitoring of physiological and muscle motions. Soft Sci 2022;2:8.
13. Patel S, Ershad F, Zhao M, et al. Wearable electronics for skin wound monitoring and healing. Soft Sci 2022;2:9.
14. Yan C, Deng W, Jin L, et al. Epidermis-inspired ultrathin 3D cellular sensor array for self-powered biomedical monitoring. ACS Appl Mater Interfaces 2018;10:41070-5.
15. Ozioko O, Dahiya R. Smart tactile gloves for haptic interaction, communication, and rehabilitation. Adv Intell Syst 2022;4:2100091.
16. Gao C, Long Z, Zhong T, Liang S, Xing L. A self-powered intelligent glove for real-time human-machine gesture interaction based on piezoelectric effect of T-ZnO/PVDF film. J Phys D Appl Phys 2022;55:194004.
17. Fuh YK, Wang BS. Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition. Nano Energy 2016;30:677-83.
18. Deng C, Tang W, Liu L, Chen B, Li M, Wang ZL. Self-powered insole plantar pressure mapping system. Adv Funct Mater 2018;28:1801606.
19. Zhu M, Shi Q, He T, et al. Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano 2019;13:1940-52.
20. Deng W, Yang T, Jin L, et al. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy 2019;55:516-25.
21. Rao J, Chen Z, Zhao D, Yin Y, Wang X, Yi F. Recent progress in self-powered skin sensors. Sensors 2019;19:2763.
22. Chen Y, Gao Z, Zhang F, Wen Z, Sun X. Recent progress in self-powered multifunctional e-skin for advanced applications. Exploration 2022;2:20210112.
23. Lee S, Hinchet R, Lee Y, et al. Ultrathin nanogenerators as self-powered/active skin sensors for tracking eye ball motion. Adv Funct Mater 2014;24:1163-8.
24. Cha Y, Seo J, Kim J, Park J. Human-computer interface glove using flexible piezoelectric sensors. Smart Mater Struct 2017;26:057002.
25. Wen F, Sun Z, He T, et al. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv Sci 2020;7:2000261.
26. Wang C, Fan Z, Feng K. A self-power flexible piezoelectric sensing system for badminton training monitoring. IEICE Electron Expr 2021;18:20210119-20210119.
27. Zhou P, Zheng Z, Wang B, Guo Y. Self-powered flexible piezoelectric sensors based on self-assembled 10 nm BaTiO3 nanocubes on glass fiber fabric. Nano Energy 2022;99:107400.
28. Liu H, Dong W, Li Y, et al. An epidermal sEMG tattoo-like patch as a new human-machine interface for patients with loss of voice. Microsyst Nanoeng 2020;6:16.
29. Reid T, Gibert J. Inclusion in human-machine interactions. Science 2022;375:149-50.
30. Gao S, Duan J, Kitsos V, Selviah DR, Nathan A. User-oriented piezoelectric force sensing and artificial neural networks in interactive displays. IEEE J Electron Devices Soc 2018;6:766-73.
31. Zhang H, Tian G, Xiong D, et al. Carrier concentration-dependent interface engineering for high-performance zinc oxide piezoelectric device. J Colloid Interface Sci 2023;629:534-40.
32. Gao Y, Yan C, Huang H, et al. Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv Funct Mater 2020;30:1909603.
33. Li J, Fang L, Sun B, et al. Recent progress in flexible and stretchable piezoresistive sensors and their applications. J Electrochem Soc 2020;167:037561.
34. Li J, Fang L, Sun B, Li X, Kang SH. Fingerprint-enhanced capacitive-piezoelectric flexible sensing skin to discriminate static and dynamic tactile stimuli. Adv Intell Syst 2019;1:1900051.
35. Cotton DPJ, Graz IM, Lacour SP. A multifunctional capacitive sensor for stretchable electronic skins. IEEE Sensors J 2009;9:2008-9.
36. Dong K, Peng X, Wang ZL. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and Artificial Intelligence. Adv Mater 2020;32:e1902549.
37. Zhu J, Zhou C, Zhang M. Recent progress in flexible tactile sensor systems: from design to application. Soft Sci 2021;1:3.
38. Zhang Z, Wen F, Sun Z, Guo X, He T, Lee C. Artificial intelligence-enabled sensing technologies in the 5G/internet of things era: from virtual reality/augmented reality to the digital twin. Adv Intell Syst 2022;4:2100228.
39. Wang W, Tian Y, Wang X, et al. Ethanol sensing properties of porous ZnO spheres via hydrothermal route. J Mater Sci 2013;48:3232-8.
40. Song K, Kim SH, Jin S, et al. Pneumatic actuator and flexible piezoelectric sensor for soft virtual reality glove system. Sci Rep 2019;9:8988.
41. Yu X, Xie Z, Yu Y, et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019;575:473-9.
42. Hwang G, Kim Y, Lee J, et al. Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energy Environ Sci 2015;8:2677-84.
43. Qiu Y, Tian Y, Sun S, et al. Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions. Nano Energy 2020;78:105337.
44. Meier M, Streli P, Fender A, et al. TapID: rapid touch interaction in virtual reality using wearable sensing. IEEE VR 2021:519-528.
45. Lu Z, Zhu Y, Jia C, et al. A self-powered portable flexible sensor of monitoring speed skating techniques. Biosensors 2021;11:108.
46. Han JH, Bae KM, Hong SK, et al. Machine learning-based self-powered acoustic sensor for speaker recognition. Nano Energy 2018;53:658-65.
47. Sun Z, Zhu M, Chen Z, et al. Haptic-feedback ring enabled human-machine interface (HMI) aiming at immersive virtual reality experience. In 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers); 2021. pp. 333-6.
48. Zhu G, Wang AC, Liu Y, Zhou Y, Wang ZL. Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett 2012;12:3086-90.
49. Charalambides A, Bergbreiter S. Rapid manufacturing of mechanoreceptive skins for slip detection in robotic grasping. Adv Mater Technol 2017;2:1600188.
50. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 2013;5:263-75.
51. Yang P, Chou S, Hsu C, et al. Tin disulfide piezoelectric nanogenerators for biomechanical energy harvesting and intelligent human-robot interface applications. Nano Energy 2020;75:104879.
52. Ilyas MA, Swingler J. Piezoelectric energy harvesting from raindrop impacts. Energy 2015;90:796-806.
53. Ahn JH, Lee MJ, Heo H, et al. Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano Lett 2015;15:3703-8.
54. Lim S, Son D, Kim J, et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv Funct Mater 2015;25:375-83.
55. Lin W, Wang B, Peng G, Shan Y, Hu H, Yang Z. Skin-inspired piezoelectric tactile sensor array with crosstalk-free row+column electrodes for spatiotemporally distinguishing diverse stimuli. Adv Sci 2021;8:2002817.
56. Kim K, Kim J, Choi J, Kim J, Lee S. Depth camera-based 3D hand gesture controls with immersive tactile feedback for natural mid-air gesture interactions. Sensors 2015;15:1022-46.
57. Heng W, Solomon S, Gao W. Flexible electronics and devices as human-machine interfaces for medical robotics. Adv Mater 2022;34:e2107902.
58. Haroun A, Le X, Gao S, et al. Progress in micro/nano sensors and nanoenergy for future AIoT-based smart home applications. Nano Express 2021;2:022005.
59. Dong B, Shi Q, Yang Y, Wen F, Zhang Z, Lee C. Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy 2021;79:105414.
60. Lee WH, Chiu CY. Design and implementation of a smart traffic signal control system for smart city applications. Sensors 2020;20:508.
61. Gao W, Emaminejad S, Nyein HYY, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016;529:509-14.
62. Dai Y, Chen J, Tian W, Xu L, Gao S. A PVDF/Au/PEN multifunctional flexible human-machine interface for multidimensional sensing and energy harvesting for the internet of things. IEEE Sensors J 2020;20:7556-68.
63. Song GJ, Cho JY, Kim K, et al. Development of a pavement block piezoelectric energy harvester for self-powered walkway applications. Appl Energy 2019;256:113916.
64. Kim JH, Cho JY, Jhun JP, et al. Development of a hybrid type smart pen piezoelectric energy harvester for an IoT platform. Energy 2021;222:119845.
65. Lv P, Qian J, Yang C, et al. Flexible all-inorganic Sm-doped PMN-PT film with ultrahigh piezoelectric coefficient for mechanical energy harvesting, motion sensing, and human-machine interaction. Nano Energy 2022;97:107182.
66. Su Y, Li W, Yuan L, et al. Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy 2021;89:106321.
67. Kim K, Cho JY, Jabbar H, et al. Optimized composite piezoelectric energy harvesting floor tile for smart home energy management. Energy Convers Manag 2018;171:31-7.
68. Le X, Shi Q, Vachon P, Ng EJ, Lee C. Piezoelectric MEMS-evolution from sensing technology to diversified applications in the 5G/Internet of Things (IoT) era. J Micromech Microeng 2022;32:014005.
69. Liu L, Guo X, Liu W, Lee C. Recent progress in the energy harvesting technology-from self-powered sensors to self-sustained IoT, and new applications. Nanomaterials 2021;11:2975.
70. Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science 2015;349:255-60.
71. Jian G, Jiao Y, Meng Q, Shao H, Wang F, Wei Z. 3D BaTiO3 flower based polymer composites exhibiting excellent piezoelectric energy harvesting properties. Adv Mater Interfaces 2020;7:2000484.
72. Zhao C, Jia C, Zhu Y, Zhao T. An effective self-powered piezoelectric sensor for monitoring basketball skills. Sensors 2021;21:5144.
73. Liu W, Long Z, Yang G, Xing L. A self-powered wearable motion sensor for monitoring volleyball skill and building big sports data. Biosensors 2022;12:60.
74. Tian G, Deng W, Gao Y, et al. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy 2019;59:574-81.
75. Yao D, Cui H, Hensleigh R, et al. Achieving the upper bound of piezoelectric response in tunable, wearable 3D printed nanocomposites. Adv Funct Mater 2019;29:1903866.
76. Mao Y, Zhu Y, Zhao T, et al. A portable and flexible self-powered multifunctional sensor for real-time monitoring in swimming. Biosensors 2021;11:147.
77. Han JH, Kwak J, Joe DJ, et al. Basilar membrane-inspired self-powered acoustic sensor enabled by highly sensitive multi tunable frequency band. Nano Energy 2018;53:198-205.
78. Viola G, Chang J, Maltby T, et al. Bioinspired multiresonant acoustic devices based on electrospun piezoelectric polymeric nanofibers. ACS Appl Mater Interfaces 2020;12:34643-57.
79. Wang J, He T, Lee C. Development of neural interfaces and energy harvesters towards self-powered implantable systems for healthcare monitoring and rehabilitation purposes. Nano Energy 2019;65:104039.
80. Shi Q, Wang T, Lee C. MEMS based broadband piezoelectric ultrasonic energy harvester (PUEH) for enabling self-powered implantable biomedical devices. Sci Rep 2016;6:24946.
81. Jiang L, Yang Y, Chen R, et al. Ultrasound-induced wireless energy harvesting for potential retinal electrical stimulation application. Adv Funct Mater 2019;29:1902522.
82. Zhang T, Liang H, Wang Z, et al. Piezoelectric ultrasound energy-harvesting device for deep brain stimulation and analgesia applications. Sci Adv 2022;8:eabk0159.
83. Jiang L, Lu G, Zeng Y, et al. Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses. Nat Commun 2022;13:3853.
84. Piech DK, Johnson BC, Shen K, et al. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nat Biomed Eng 2020;4:207-22.
85. Wang HS, Hong SK, Han JH, et al. Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci Adv 2021;7:eabe5683.
86. Kyamakya K, Al-Machot F, Haj Mosa A, Bouchachia H, Chedjou JC, Bagula A. Emotion and stress recognition related sensors and machine learning technologies. Sensors 2021;21:2273.
87. Qi Y, Jia W, Gao S. Emotion recognition based on piezoelectric keystroke dynamics and Machine Learning. In 2021 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS); 2021. pp. 1-4.
88. Gao S, Dai Y, Kitsos V, Wan B, Qu X. High three-dimensional detection accuracy in piezoelectric-based touch panel in interactive displays by optimized artificial neural networks. Sensors 2019;19:753.
89. Gao S, Guo R, Shao M, Xu L. A touch orientation classification-based force-voltage responsivity stabilization method for piezoelectric force sensing in interactive displays. IEEE Sensors J 2020;20:8147-54.
90. Zhou Z, Chen K, Li X, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron 2020;3:571-8.
91. Jung YH, Hong SK, Wang HS, et al. Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv Mater 2020;32:e1904020.
92. Novoselov S, Kudashev O, Shchemelinin V, et al. Deep CNN based feature extractor for text-prompted speaker recognition. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2018. pp. 5334-8.
93. Wang M, Luo Y, Wang T, et al. artificial skin perception. Adv Mater 2021;33:e2003014.
94. Chung J, Lim H, Lim M, Cha Y. Object classification based on piezoelectric actuator-sensor pair on robot hand using neural network. Smart Mater Struct 2020;29:105020.
95. Jia W, Qi Y, Huang A, Zhou F, Gao S. High security user authentication based on piezoelectric keystroke dynamics applying to multiple emotional responses. IEEE Sensors J 2022;22:2814-22.
96. Jeong YC, Lee HE, Shin A, Kim DG, Lee KJ, Kim D. Progress in brain-compatible interfaces with soft nanomaterials. Adv Mater 2020;32:e1907522.
97. Liu Y, Yiu C, Song Z, et al. Electronic skin as wireless human-machine interfaces for robotic VR. Sci Adv 2022;8:eabl6700.
98. Zhu G, Zeng Z, Zhang L, et al. Piezoelectricity in β-phase PVDF crystals: a molecular simulation study. Comput Mater Sci 2008;44:224-9.
99. Zhang J, Wang C, Bowen C. Piezoelectric effects and electromechanical theories at the nanoscale. Nanoscale 2014;6:13314-27.
100. Zhang M, Zhang AM, Chen Y, et al. Polyoxovanadate-polymer hybrid electrolyte in solid state batteries. Energy Stor Mater 2020;29:172-81.
101. Zhang L, Gui J, Wu Z, et al. Enhanced performance of piezoelectric nanogenerator based on aligned nanofibers and three-dimensional interdigital electrodes. Nano Energy 2019;65:103924.
102. Chu Y, Zhong J, Liu H, et al. Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system. Adv Funct Mater 2018;28:1803413.
103. Han M, Wang H, Yang Y, et al. Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat Electron 2019;2:26-35.
104. Liu X, Wei Y, Qiu Y. Advanced flexible skin-like pressure and strain sensors for human health monitoring. Micromachines 2021;12:695.
105. Jella V, Ippili S, Eom J, et al. A comprehensive review of flexible piezoelectric generators based on organic-inorganic metal halide perovskites. Nano Energy 2019;57:74-93.
106. Liu H, Zhong J, Lee C, Lee S, Lin L. A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications. Appl Phys Rev 2018;5:041306.
107. Kang S, Kim SH, Lee HB, et al. High-power energy harvesting and imperceptible pulse sensing through peapod-inspired hierarchically designed piezoelectric nanofibers. Nano Energy 2022;99:107386.
108. Mahapatra SD, Mohapatra PC, Aria AI, et al. Piezoelectric materials for energy harvesting and sensing applications: roadmap for future smart materials. Adv Sci 2021;8:e2100864.
109. Yi F, Ren H, Shan J, Sun X, Wei D, Liu Z. Wearable energy sources based on 2D materials. Chem Soc Rev 2018;47:3152-88.
110. Gao Z, Zhou J, Gu Y, et al. Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor. J Appl Phys 2009;105:113707.
111. Huang X, Wang Y, Zhang X. Ultrarobust, hierarchically anisotropic structured piezoelectric nanogenerators for self-powered sensing. Nano Energy 2022;99:107379.
112. Chen G, Xiao X, Zhao X, Tat T, Bick M, Chen J. Electronic textiles for wearable point-of-care systems. Chem Rev 2022;122:3259-91.
113. Deng W, Zhou Y, Libanori A, Chen G, Yang W, Chen J. Piezoelectric nanogenerators for personalized healthcare. Chem Soc Rev 2022;51:3380-435.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.