REFERENCES

1. Bai Y, Zhao Y, Li Y, et al. UV-shielding alginate films crosslinked with Fe3+ containing EDTA. Carbohydr Polym 2020;239:115480.

2. Afzal A, Khaliq Z, Ahmad S, Ahmad F, Noor A, Qadir MB. Development and characterization of biodegradable composite film. Environ Technol Innov 2021;23:101664.

3. Kumar S, Jahan K, Verma A, Agarwal M, Chandraprakash C. Agar-based composite films as effective biodegradable sound absorbers. ACS Sustain Chem Eng 2022;10:8242-53.

4. Li S, Li B, Gong L, et al. Enhanced mechanical properties of polyacrylamide/chitosan hydrogels by tuning the molecular structure of hyperbranched polysiloxane. Mater Des 2019;162:162-70.

5. Ye Y, Zhang Y, Chen Y, Han X, Jiang F. Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv Funct Mater 2020;30:2003430.

6. Rol F, Belgacem MN, Gandini A, Bras J. Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 2019;88:241-64.

7. Li T, Li SX, Kong W, et al. A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci Adv 2019;5:eaau4238.

8. Wang C, Wang S, Chen G, et al. Flexible, bio-compatible nanofluidic Ion conductor. Chem Mater 2018;30:7707-13.

9. Hu J, Wu Y, Yang Q, et al. One-pot freezing-thawing preparation of cellulose nanofibrils reinforced polyvinyl alcohol based ionic hydrogel strain sensor for human motion monitoring. Carbohydr Polym 2022;275:118697.

10. Xu D, Wang S, Berglund LA, Zhou Q. Surface charges control the structure and properties of layered nanocomposite of cellulose nanofibrils and clay platelets. ACS Appl Mater Interfaces 2021;13:4463-72.

11. Li Y, Grishkewich N, Liu L, et al. Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils. Chem Eng J 2019;366:531-8.

12. Ghanadpour M, Carosio F, Wågberg L. Ultrastrong and flame-resistant freestanding films from nanocelluloses, self-assembled using a layer-by-layer approach. Appl Mater Today 2017;9:229-39.

13. Tong C, Zhang S, Zhong T, Fang Z, Liu H. Highly fibrillated and intrinsically flame-retardant nanofibrillated cellulose for transparent mineral filler-free fire-protective coatings. Chem Eng J 2021;419:129440.

14. Farooq M, Sipponen MH, Seppälä A, Österberg M. Eco-friendly flame-retardant cellulose nanofibril aerogels by incorporating sodium bicarbonate. ACS Appl Mater Interfaces 2018;10:27407-15.

15. Ghanadpour M, Carosio F, Ruda MC, Wågberg L. Tuning the nanoscale properties of phosphorylated cellulose nanofibril-based thin films to achieve highly fire-protecting coatings for flammable solid materials. ACS Appl Mater Interfaces 2018;10:32543-55.

16. Li S, Yu Z, Guo B, et al. Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2TX MXene hydrogels for wide-temperature strain sensing. Nano Energy 2021;90:106502.

17. Mao M, Yu K, Cao C, et al. Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning. Chem Eng J 2022;427:131615.

18. Shimizu M, Fukuzumi H, Saito T, Isogai A. Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 2011;84:579-583.

19. Li Y, Chen Y, He X, Xiang Z, Heinze T, Qi H. Lignocellulose nanofibril/gelatin/MXene composite aerogel with fire-warning properties for enhanced electromagnetic interference shielding performance. Chem Eng J 2022;431:133907.

20. Zhang S, Li S, Wu Q, et al. Phosphorus containing group and lignin toward intrinsically flame retardant cellulose nanofibril-based film with enhanced mechanical properties. Compos Part B Eng 2021;212:108699.

21. Dong L, Hu C, Song L, Huang X, Chen N, Qu L. A large-area, flexible, and flame-retardant graphene paper. Adv Funct Mater 2016;26:1470-6.

22. Hou G, Zhao S, Li Y, Fang Z, Isogai A. Mechanically robust, flame-retardant phosphorylated cellulose films with tunable optical properties for light management in LEDs. Carbohydr Polym 2022;298:120129.

23. Tao Y, Huang C, Lai C, Huang C, Yong Q. Biomimetic galactomannan/bentonite/graphene oxide film with superior mechanical and fire retardant properties by borate cross-linking. Carbohydr Polym 2020;245:116508.

24. Yu ZR, Li SN, Zang J, et al. Enhanced mechanical property and flame resistance of graphene oxide nanocomposite paper modified with functionalized silica nanoparticles. Compos Part B Eng 2019;177:107347.

25. Cao C, Yu B, Guo B, et al. Bio-inspired, sustainable and mechanically robust graphene oxide-based hybrid networks for efficient fire protection and warning. Chem Eng J 2022;439:134516.

26. Cao CF, Yu B, Chen ZY et al. Fire intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire warning. Nano-Micro Lett 2022;14:92.

27. Phanthuwongpakdee J, Harimoto T, Babel S, Dwivedi S, Takada K, Kaneko T. Flame retardant transparent films of thermostable biopolyimide metal hybrids. Polym Degrad Stab 2021;188:109571.

28. Lopez V, Paton-carrero A, Romero A, Valverde JL, Sanchez-silva L. Improvement of the mechanical and flame-retardant properties of polyetherimide membranes modified with Graphene oxide. Polym-Plast Tech Mat 2019;58:1170-7.

29. Li J, Wang S, Liu F, et al. Flame-retardant AEMs based on organic-inorganic composite polybenzimidazole membranes with enhanced hydroxide conductivity. J Membr Sci 2019;591:117306.

30. Yu Z, Mao M, Li S, et al. Facile and green synthesis of mechanically flexible and flame-retardant clay/graphene oxide nanoribbon interconnected networks for fire safety and prevention. Chem Eng J 2021;405:126620.

31. Chen G, Hu Y, Peng F, et al. Fabrication of strong nanocomposite films with renewable forestry waste/montmorillonite/reduction of graphene oxide for fire retardant. Chem Eng J 2018;337:436-45.

32. Li K, Skolrood LN, Aytug T, Tekinalp H, Ozcan S. Strong and tough cellulose nanofibrils composite films: mechanism of synergetic effect of hydrogen bonds and ionic interactions. ACS Sustain Chem Eng 2019;7:14341-6.

33. Cao W, Ma C, Mao D, Zhang J, Ma M, Chen F. MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv Funct Mater 2019;29:1905898.

34. Huo S, Zhou Z, Jiang J, et al. Flame-retardant, transparent, mechanically-strong and tough epoxy resin enabled by high-efficiency multifunctional boron-based polyphosphonamide. Chem Eng J 2022;427:131578.

35. Li S, He X, Zeng Z, et al. Mechanically ductile, ionically conductive and low-temperature tolerant hydrogel enabled by high-concentration saline towards flexible strain sensor. Nano Energy 2022;103:107789.

36. Wang T, Long M, Zhao H, et al. Temperature-responsive intumescent chemistry toward fire resistance and super thermal insulation under extremely harsh conditions. Chem Mater 2021;33:6018-28.

37. Miao J, Yuan L, Guan Q, Liang G, Gu A. Biobased heat resistant epoxy resin with extremely high biomass content from 2,5-furandicarboxylic acid and eugenol. ACS Sustain Chem Eng 2017;5:7003-11.

38. Shi Q, Huo S, Wang C, et al. A phosphorus/silicon-based, hyperbranched polymer for high-performance, fire-safe, transparent epoxy resins. Polym Degrad Stab 2022;203:110065.

39. Sai T, Su Y, Shen H, et al. Fabrication and mechanism study of cerium-based P, N-containing complexes for reducing fire hazards of polycarbonate with superior thermostability and toughness. ACS Appl Mater Interfaces 2021:30061-75.

40. Xue Y, Feng J, Huo S, et al. Polyphosphoramide-intercalated MXene for simultaneously enhancing thermal stability, flame retardancy and mechanical properties of polylactide. Chem Eng J 2020;397:125336.

41. Velencoso MM, Battig A, Markwart JC, Schartel B, Wurm FR. Molecular firefighting-how modern phosphorus chemistry can help solve the challenge of flame retardancy. Angew Chem Int Ed Engl 2018;57:10450-67.

42. Teng N, Dai J, Wang S, Hu J, Liu X. Hyperbranched flame retardant for epoxy resin modification: simultaneously improved flame retardancy, toughness and strength as well as glass transition temperature. Chem Eng J 2022;428:131226.

43. Chen L, Zhao D, Wang X, Wang Y. Durable macromolecular firefighting for unsaturated polyester via integrating synergistic charring and hydrogen bond. Chem Eng J 2022;443:136365.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/