REFERENCES

1. Renda F, Boyer F, Dias J, Seneviratne L. Discrete cosserat approach for multisection soft manipulator dynamics. IEEE Trans Robot 2018;34:1518-33.

2. Yang H, Xu M, Li W, Zhang S. Design and implementation of a soft robotic arm driven by sma coils. IEEE Trans Ind Electron 2019;66:6108-16.

3. Singh G, Krishnan G. A constrained maximization formulation to analyze deformation of fiber reinforced elastomeric actuators. Smart Mater Struct 2017;26:065024.

4. Park W, Shin E, Yoo Y, Choi S, Kim S. Soft haptic actuator based on knitted PVC gel fabric. IEEE Trans Ind Electron 2020;67:677-85.

5. Zhao Y, Lo CY, Ruan L, et al. Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel. Sci Robot 2021;6:eabd5483.

6. Gorissen B, Reynaerts D, Konishi S, Yoshida K, Kim JW, De Volder M. Elastic inflatable actuators for soft robotic applications. Adv Mater 2017;29:1604977.

7. Zhang J, Zhao J, Wang S, Chen H, Li D. Large stable deformation of dielectric elastomers driven on mode of steady electric field. Smart Mater Struct 2017;26:05LT01.

8. Shintake J, Cacucciolo V, Floreano D, Shea H. Soft robotic grippers. Adv Mater 2018:e1707035.

9. Chen S, Pang Y, Cao Y, Tan X, Cao C. Soft robotic manipulation system capable of stiffness variation and dexterous operation for safe human-machine interactions. Adv Mater Technol 2021;6:2100084.

10. Manti M, Hassan T, Passetti G, D'elia N, Laschi C, Cianchetti M. A bioinspired soft robotic gripper for adaptable and effective grasping. Soft Robot 2015;2:107-16.

11. Shapiro Y, Wolf A, Gabor K. Bi-bellows: pneumatic bending actuator. Sens Actuators A Phys 2011;167:484-94.

12. Henke M, Sorber J, Gerlach G. Multi-layer beam with variable stiffness based on electroactive polymers. In proceedings of spie-the international society for optical engineering. 2012. pp. 83401P-13.

13. Choi I, Corson N, Peiros L, Hawkes EW, Keller S, Follmer S. A soft, controllable, high force density linear brake utilizing layer jamming. IEEE Robot Autom Lett 2018;3:450-7.

14. Zhu M, Do TN, Hawkes E, Visell Y. Fluidic fabric muscle sheets for wearable and soft robotics. Soft Robot 2020;7:179-97.

15. Liu S, Jiao J, Meng F, Mei T, Sun X, Kong W. Modelling of a soft actuator with a semicircular cross section under gravity and external load. IEEE Trans Ind Electron 2022;5:4952-61.

16. Liu S, Jiao J, Kong W, et al. Modeling of a bio-inspired soft arm with semicircular cross section for underwater grasping. Smart Mater Struct 2021;30:125029.

17. Wang Z, Wang D, Zhang Y, et al. A three-fingered force feedback glove using fiber-reinforced soft bending actuators. IEEE Trans Ind Electron 2020;67:7681-90.

18. Manti M, Cacucciolo V, Cianchetti M. Stiffening in soft robotics: a review of the state of the art. IEEE Robot Automat Mag 2016;23:93-106.

19. Jiang A, Ranzani T, Gerboni G, et al. Robotic granular jamming: does the membrane matter? Soft Robot 2014;1:192-201.

20. Majidi C, Wood RJ. Tunable elastic stiffness with microconfined magnetorheological domains at low magnetic field. Appl Phys Lett 2010;97:164104.

21. Jiang P, Yang Y, Chen MZQ, Chen Y. A variable stiffness gripper based on differential drive particle jamming. Bioinspir Biomim 2019;14:036009.

22. Jiang A, Xynogalas G, Dasgupta P, Althoefer K, Nanayakkara T. Design of a variable stiffness flexible manipulator with composite granular jamming and membrane coupling. In proceedings of 2012 IEEE/RSJ international conference on intelligent robots and systems. 2012. pp. 2922-27.

23. Taghavi M, Helps T, Huang B, Rossiter J. 3D-printed ready-to-use variable-stiffness structures. IEEE Robot Autom Lett 2018;3:2402-7.

24. Ze Q, Kuang X, Wu S, et al. Magnetic shape memory polymers with integrated multifunctional shape manipulation. Adv Mater 2020;32:e1906657.

25. Nakagawa M, Luding S, Pournin L, Tsukahara M, Liebling TM. Particle shape versus friction in granular jamming. In proceedings of AIP Conference Proceedings. 2009. Volume 1145, pp. 499-502.

26. Amend JR, Brown E, Rodenberg N, Jaeger HM, Lipson H. A positive pressure universal gripper based on the jamming of granular material. IEEE Trans Robot 2012;28:341-50.

27. Kim YJ, Cheng S, Kim S, Iagnemma K. Design of a tubular snake-like manipulator with stiffening capability by layer jamming. In proceedings of 2012 IEEE/RSJ international conference on intelligent robots and systems. 2012. pp. 4251-6.

28. Li Y, Chen Y, Yang Y, Wei Y. Passive particle jamming and its stiffening of soft robotic grippers. IEEE Trans Robot 2017;33:446-55.

29. Kim Y, Cheng S, Kim S, Iagnemma K. A novel layer jamming mechanism with tunable stiffness capability for minimally invasive surgery. IEEE Trans Robot 2013;29:1031-42.

30. Jiang Y, Chen D, Liu C, Li J. Chain-like granular jamming: a novel stiffness-programmable mechanism for soft robotics. Soft Robot 2019;6:118-32.

31. Xie T. Tunable polymer multi-shape memory effect. Nature 2010;464:267-70.

32. Yuen MC, Bilodeau RA, Kramer RK. Active variable stiffness fibers for multifunctional robotic fabrics. IEEE Robot Autom Lett 2016;1:708-15.

33. Hao Y, Wang T, Xie Z, et al. A eutectic-alloy-infused soft actuator with sensing, tunable degrees of freedom, and stiffness properties. J Micromech Microeng 2018;28:024004.

34. Xu W, Huan AS, Ren H. Prototyping and characterisation of a variable stiffness actuation mechanism based on low melting point polymer. Int J Mechatron Autom 2016;5:211.

35. Shintake J, Schubert B, Rosset S, Shea H, Floreano D. Variable stiffness actuator for soft robotics using dielectric elastomer and low-melting-point alloy. In proceedings of 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). 2015. pp. 1097-102.

36. Hao Y, Wang T, Xi F, Kang Y, Li W. A variable stiffness soft robotic gripper with low-melting-point alloy. In proceedings of 2017 36th Chinese Control Conference (CCC). 2017. pp. 6781-6.

37. Zhang Y, Zhang N, Hingorani H, et al. Soft robots: fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing. Adv Funct Mater 2019;29:1970098.

38. Schubert BE, Floreano D. Variable stiffness material based on rigid low-melting-point-alloy microstructures embedded in soft poly(dimethylsiloxane) (PDMS). RSC Adv 2013;3:24671.

39. Al-Rubaiai M, Pinto T, Qian C, Tan X. Soft actuators with stiffness and shape modulation using 3D-printed conductive polylactic acid material. Soft Robot 2019;6:318-32.

40. Li Y, Chen Y, Ren T, Li Y, Choi SH. Precharged pneumatic soft actuators and their applications to untethered soft robots. Soft Robot 2018;5:567-75.

41. He Q, Wang Z, Wang Y, Minori A, Tolley MT, Cai S. Electrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuation. Sci Adv 2019;5:eaax5746.

42. Alcântara CCJ, Kim S, Lee S, et al. 3D fabrication of fully iron magnetic microrobots. Small 2019;15:e1805006.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/