REFERENCES

1. Jing X, Wang X, Mi H, Turng L. Stretchable gelatin/silver nanowires composite hydrogels for detecting human motion. Mater Lett 2019;237:53-6.

2. Paul SJ, Elizabeth I, Gupta BK. Ultrasensitive wearable strain sensors based on a VACNT/PDMS thin film for a wide range of human motion monitoring. ACS Appl Mater Interfaces 2021;13:8871-9.

3. Yang Z, Wang DY, Pang Y, et al. Simultaneously detecting subtle and intensive human motions based on a silver nanoparticles bridged graphene strain sensor. ACS Appl Mater Interfaces 2018;10:3948-54.

4. Guan F, Guo CF. Flexible, high-strength, and porous nano-nano composites based on bacterial cellulose for wearable electronics: a review. Soft Sci 2022;2:16.

5. You A, Zhang X, Peng X, Dong K, Lu Y, Zhang Q. A Skin-inspired triboelectric nanogenerator with an interpenetrating structure for motion sensing and energy harvesting. Macro Mater Eng 2021;306:2100147.

6. Das PS, Chhetry A, Maharjan P, Rasel MS, Park JY. A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Res 2019;12:1789-95.

7. Kireev D, Okogbue E, Jayanth RT, Ko TJ, Jung Y, Akinwande D. Multipurpose and reusable ultrathin electronic tattoos based on PtSe2 and PtTe2. ACS Nano 2021;15:2800-11.

8. Liu X, Liu D, Lee JH, et al. Spider-web-inspired stretchable graphene woven fabric for highly sensitive, transparent, wearable strain sensors. ACS Appl Mater Interfaces 2019;11:2282-94.

9. Yi S, Wang L, Chen Z, et al. High-throughput fabrication of soft magneto-origami machines. Nat Commun 2022;13:4177.

10. Maisto M, Pacchierotti C, Chinello F, Salvietti G, De Luca A, Prattichizzo D. Evaluation of wearable haptic systems for the fingers in augmented reality applications. IEEE Trans Haptics 2017;10:511-22.

11. Marasco A, Buonincontri P, van Niekerk M, Orlowski M, Okumus F. Exploring the role of next-generation virtual technologies in destination marketing. J Dest Mark Manag 2018;9:138-48.

12. Yin J, Hinchet R, Shea H, Majidi C. Wearable soft technologies for haptic sensing and feedback. Adv Funct Mater 2021;31:2007428.

13. Boutry CM, Negre M, Jorda M, et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci Robot 2018;3:eaau6914.

14. Chen H, Song Y, Cheng X, Zhang H. Self-powered electronic skin based on the triboelectric generator. Nano Energy 2019;56:252-68.

15. Guo H, Lan C, Zhou Z, Sun P, Wei D, Li C. Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 2017;9:6246-53.

16. Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater 2019;31:e1904765.

17. Su Q, Zhang H, Chen S. Flexible and tandem quantum-dot light-emitting diodes with individually addressable red/green/blue emission. NPJ Flex Electron 2021:5.

18. Li G. PEDOT:PSS-based intrinsically soft and stretchable bioelectronics. Soft Sci 2022;2:7.

19. Kar E, Bose N, Dutta B, Mukherjee N, Mukherjee S. Ultraviolet- and microwave-protecting, Self-Cleaning e-skin for efficient energy harvesting and tactile mechanosensing. ACS Appl Mater Interfaces 2019;11:17501-12.

20. Dong K, Wu Z, Deng J, et al. A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv Mater 2018;30:e1804944.

21. Patel S, Ershad F, Zhao M, et al. Wearable electronics for skin wound monitoring and healing. Soft Sci 2022;2:9.

22. Yuan J, Zhu R, Li G. Self-powered electronic skin with multisensory functions based on thermoelectric conversion. Adv Mater Technol 2022:5.

23. Zhang Y, Zhao Y, Zhai W, et al. Multifunctional interlocked e-skin based on elastic micropattern array facilely prepared by hot-air-gun. Chem Eng J 2021;407:127960.

24. Parangusan H, Ponnamma D, Al-Maadeed MAA. Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators. Sci Rep 2018;8:754.

25. Sun B, McCay RN, Goswami S, et al. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv Mater 2018;30:e1804327.

26. Choi D, Jang S, Kim JS, Kim H, Kim DH, Kwon J. A highly sensitive tactile sensor using a pyramid-plug structure for detecting pressure, shear force, and torsion. Adv Mater Technol 2019;4:1800284.

27. Ferreira A, Correia V, Mendes E, Lopes C, Vaz JFV, Lanceros-mendez S. Piezoresistive polymer-based materials for real-time assessment of the stump/socket interface pressure in lower limb amputees. IEEE Sensors J 2017;17:2182-90.

28. Qiu J, Guo X, Chu R, et al. Rapid-response, low detection limit, and high-sensitivity capacitive flexible tactile sensor based on three-dimensional porous dielectric layer for wearable electronic skin. ACS Appl Mater Interfaces 2019;11:40716-25.

29. Tran M, Tung T, Sachan A, Losic D, Castro M, Feller J. 3D sprayed polyurethane functionalized graphene/carbon nanotubes hybrid architectures to enhance the piezo-resistive response of quantum resistive pressure sensors. Carbon 2020;168:564-79.

30. Guo Y, Guo Z, Zhong M, Wan P, Zhang W, Zhang L. A flexible wearable pressure sensor with bioinspired microcrack and interlocking for full-range human-machine interfacing. Small 2018;14:e1803018.

31. Zhu L, Wang Y, Mei D, Ding W, Jiang C, Lu Y. Fully elastomeric fingerprint-shaped electronic skin based on tunable patterned graphene/silver nanocomposites. ACS Appl Mater Interfaces 2020;12:31725-37.

32. Pyo S, Kim W, Jung HI, Choi J, Kim J. Heterogeneous integration of carbon-nanotube-graphene for high-performance, flexible, and transparent photodetectors. Small 2017;13:1700918.

33. Ren M, Zhou Y, Wang Y, et al. Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure. Chem Eng J 2019;360:762-77.

34. Wang Y, Mao H, Wang Y, Zhu P, Liu C, Deng Y. 3D geometrically structured PANI/CNT-decorated polydimethylsiloxane active pressure and temperature dual-parameter sensors for man–machine interaction applications. J Mater Chem A 2020;8:15167-76.

35. Peng X, Dong K, Ye C, et al. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci Adv 2020;6:eaba9624.

36. Zhao L, Qiang F, Dai SW, et al. Construction of sandwich-like porous structure of graphene-coated foam composites for ultrasensitive and flexible pressure sensors. Nanoscale 2019;11:10229-38.

37. Zhao T, Li J, Zeng H, et al. Self-powered wearable sensing-textiles for real-time detecting environmental atmosphere and body motion based on surface-triboelectric coupling effect. Nanotechnology 2018;29:405504.

38. Qiao Y, Wang Y, Jian J, et al. Multifunctional and high-performance electronic skin based on silver nanowires bridging graphene. Carbon 2020;156:253-60.

39. Guo R, Wang X, Yu W, Tang J, Liu J. A highly conductive and stretchable wearable liquid metal electronic skin for long-term conformable health monitoring. Sci China Technol Sci 2018;61:1031-7.

40. Zhang X, Xiang D, Zhu W, et al. Flexible and high-performance piezoresistive strain sensors based on carbon nanoparticles@polyurethane sponges. Compos Sci Technol 2020;200:108437.

41. Zhao X, Meng F, Peng Y. Flexible and highly pressure-sensitive ternary composites-wrapped polydimethylsiloxane sponge based on synergy of multi-dimensional components. Compos Part B Eng 2022;229:109466.

42. Pan F, Chen S, Li Y, et al. 3D graphene films enable simultaneously high sensitivity and large stretchability for strain sensors. Adv Funct Mater 2018;28:1803221.

43. Huang L, Diao D, Cao Y. Electrochemical corrosion behaviors of N-doped graphene sheets embedded carbon films in acid. Appl Surface Sci 2021;544:148781.

44. Zhang W, Diao D, Sun K, Fan X, Wang P. Study on friction-electrification coupling in sliding-mode triboelectric nanogenerator. Nano Energy 2018;48:456-63.

45. Zhang X, Tian L, Diao D. High-response heterojunction phototransistor based on vertically grown graphene nanosheets film. Carbon 2021;172:720-8.

46. Chen W, Zhang X, Diao D. Low-energy electron excitation effect on formation of graphene nanocrystallites during carbon film growth process. Appl Phys Lett 2017;111:114105.

47. Tang ZH, Xue SS, Li YQ, Zhu ZC, Huang P, Fu SY. One-step synthesis of microdome patterns for microstructured pressure sensors with ultra-high sensing performance. ACS Appl Mater Interfaces 2021;13:48009-19.

48. Xia P, Liu P, Wu S, et al. Highly stretchable and sensitive flexible resistive strain sensor based on waterborne polyurethane polymer for wearable electronics. Compos Sci Technol 2022;221:109355.

49. Zhai W, Zhu J, Wang Z, et al. Stretchable, sensitive strain sensors with a wide workable range and low detection limit for wearable electronic skins. ACS Appl Mater Interfaces 2022;14:4562-70.

50. Zhang X, Lin Z, Peng D, Diao D. Bias-modulated high photoelectric response of graphene-nanocrystallite embedded carbon film coated on n-silicon. Nanomaterials 2019;9:327.

51. Lin Z, Wang Z, Zhang X, Diao D. Superhydrophobic, photo-sterilize, and reusable mask based on graphene nanosheet-embedded carbon (GNEC) film. Nano Res 2021;14:1110-5.

52. Devaraj S, Munichandraiah N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 2008;112:4406-17.

53. Quhe R, Ma J, Zeng Z, et al. Tunable band gap in few-layer graphene by surface adsorption. Sci Rep 2013:3.

54. Yoo S, Kim C, Shin J, et al. Characterization of an amorphous carbon film covering a Mo grid during in situ heating TEM study. Mater Charact 2013;78:31-6.

55. Ferrari AC, Libassi A, Tanner BK, et al. Density, sp3 fraction, and cross-sectional structure of amorphous carbon films determined by x-ray reflectivity and electron energy-loss spectroscopy. Phys Rev B 2000;62:11089-103.

56. Shakerzadeh M, Teo E, Sorkin A, Bosman M, Tay B, Su H. Plasma density induced formation of nanocrystals in physical vapor deposited carbon films. Carbon 2011;49:1733-44.

57. Cao R, Wang H, Guo Z, et al. Black phosphorous/indium selenide photoconductive detector for visible and near-infrared light with high sensitivity. Adv Opt Mater 2019;7:1900020.

58. Dan L, Elias AL. Flexible and stretchable temperature sensors fabricated using solution-processable conductive polymer composites. Adv Healthc Mater 2020;9:e2000380.

59. Liu C, Han S, Xu H, Wu J, Liu C. Multifunctional highly sensitive multiscale stretchable strain sensor based on a graphene/glycerol-kcl synergistic conductive network. ACS Appl Mater Interfaces 2018;10:31716-24.

60. Zhao S, Lou D, Zhan P, et al. Heating-induced negative temperature coefficient effect in conductive graphene/polymer ternary nanocomposites with a segregated and double-percolated structure. J Mater Chem C 2017;5:8233-42.

61. Liu G, Tan Q, Kou H, et al. A flexible temperature sensor based on reduced graphene oxide for robot skin used in internet of things. Sensors 2018;18:1400.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/