REFERENCES
1. Walker JM, Blank AA, Shewokis PA, OMalley MK. Tactile feedback of object slip facilitates virtual object manipulation. IEEE Trans Haptics 2015;8:454-66.
2. Gibo TL, Bastian AJ, Okamura AM. Grip force control during virtual object interaction: effect of force feedback,accuracy demands, and training. IEEE Trans Haptics 2014;7:37-47.
3. Ajoudani A, Godfrey SB, Bianchi M, et al. Exploring teleimpedance and tactile feedback for intuitive control of the Pisa/IIT SoftHand. IEEE Trans Haptics 2014;7:203-15.
4. Schofield JS, Evans KR, Carey JP, Hebert JS. Applications of sensory feedback in motorized upper extremity prosthesis: a review. Expert Rev Med Devices 2014;11:499-511.
5. Biddiss E, Beaton D, Chau T. Consumer design priorities for upper limb prosthetics. Disabil Rehabil Assist Technol 2007;2:346-57.
6. Cordella F, Ciancio AL, Sacchetti R, et al. Literature review on needs of upper limb prosthesis users. Front Neurosci 2016;10:209.
7. Engdahl SM, Christie BP, Kelly B, Davis A, Chestek CA, Gates DH. Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques. J Neuroeng Rehabil 2015;12:53.
8. Wijk U, Carlsson I. Forearm amputees’ views of prosthesis use and sensory feedback. J Hand Ther 2015;28:269-77; quiz 278.
9. Belter JT, Segil JL, Dollar AM, Weir RF. Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review. J Rehabil Res Dev 2013;50:599-618.
10. Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ. A neural interface provides long-term stable natural touch perception. Sci Transl Med 2014;6:257ra138.
11. Osborn LE, Dragomir A, Betthauser JL, et al. Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain. Sci Robot 2018:3.
12. Gu G, Zhang N, Xu H, et al. A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback. Nat Biomed Eng 2021; doi: 10.1038/s41551-021-00767-0.
13. D’Anna E, Valle G, Mazzoni A, et al. A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback. Sci Robot 2019;4:eaau8892.
14. Zollo L, Di Pino G, Ciancio AL, et al. Restoring Tactile sensations via neural interfaces for real-time force-and-slippage closed-loop control of bionic hands. Sci Robot 2019;4:eaau9924.
15. Zhao H, O’Brien K, Li S, Shepherd RF. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci Robot 2016;1:eaai7529.
16. Boutry CM, Negre M, Jorda M, et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci Robot 2018;3:eaau6914.
17. Lee S, Franklin S, Hassani FA, et al. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 2020;370:966-70.
18. Ma D, Ceron S, Kaiser G, Petersen K. Simple, Low-Cost Fabrication of Soft Sensors for Shape Reconstruction. IEEE Robot Autom Lett 2020;5:4049-54.
19. Chen J, Zhang J, Luo Z, et al. Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring. ACS Appl Mater Interfaces 2020;12:22200-11.
20. Kim T, Lee S, Hong T, Shin G, Kim T, Park YL. Heterogeneous sensing in a multifunctional soft sensor for human-robot interfaces. Sci Robot 2020;5:eabc6878.
21. Bai H, Li S, Barreiros J, Tu Y, Pollock CR, Shepherd RF. Stretchable distributed fiber-optic sensors. Science 2020;370:848-52.
22. Yan Y, Hu Z, Yang Z, et al. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci Robot 2021;6:eabc8801.
23. Ge J, Wang X, Drack M, et al. A bimodal soft electronic skin for tactile and touchless interaction in real time. Nat Commun 2019;10:4405.
24. Pu X, Liu M, Chen X, et al. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv 2017;3:e1700015.
25. Jin T, Sun Z, Li L, et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat Commun 2020;11:5381.
26. Li G, Liu S, Wang L, Zhu R. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci Robot 2020;5:eabc8134.
27. Chai G, Wang H, Li G, Sheng X, Zhu X. Electrotactile feedback improves grip force control and enables object stiffness recognition while using a myoelectric hand. IEEE Trans Neural Syst Rehabil Eng 2022;30:1310-20.
28. Motamedi MR, Roberge JP, Duchaine V. The use of vibrotactile feedback to restore texture recognition capabilities, and the effect of subject training. IEEE Trans Neural Syst Rehabil Eng 2017;25:1230-9.
29. Franceschi M, Seminara L, Dosen S, Strbac M, Valle M, Farina D. A system for electrotactile feedback using electronic skin and flexible matrix electrodes: experimental evaluation. IEEE Trans Haptics 2017;10:162-72.
30. Wall J, Xu J, Wang X. Human brain plasticity: an emerging view of the multiple substrates and mechanisms that cause cortical changes and related sensory dysfunctions after injuries of sensory inputs from the body. Brain Res Rev 2002;39:181-215.
31. Ramachandran VS, Hirstein W. The perception of phantom limbs. The D. O. Hebb lecture. Brain 1998;121:1603-30.
32. Chai G, Sui X, Li S, He L, Lan N. Characterization of evoked tactile sensation in forearm amputees with transcutaneous electrical nerve stimulation. J Neural Eng 2015;12:066002.
33. Zhang S, Guo K, Sun L, et al. Selective release of different neurotransmitters emulated by a p-i-n junction synaptic transistor for environment-responsive action control. Adv Mater 2021;33:e2007350.
34. Gong J, Wei H, Liu J, et al. An artificial visual nerve for mimicking pupil reflex. Matter 2022;5:1578-89.
35. Wei H, Shi R, Sun L, et al. Mimicking efferent nerves using a graphdiyne-based artificial synapse with multiple ion diffusion dynamics. Nat Commun 2021;12:1068.
36. Sun L, Du Y, Yu H, Wei H, Xu W, Xu W. An artificial reflex Arc that perceives afferent visual and tactile information and controls efferent muscular actions. Research 2022;2022:9851843.
37. Chai G, Zhang D, Zhu X. Developing Non-somatotopic phantom finger sensation to comparable levels of somatotopic sensation through user training with electrotactile stimulation. IEEE Trans Neural Syst Rehabil Eng 2017;25:469-80.
38. Zhang J, Hao M, Yang F, et al. Evaluation of multiple perceptual qualities of transcutaneous electrical nerve stimulation for evoked tactile sensation in forearm amputees. J Neural Eng 2022;19:026041.