REFERENCES
1. Patel S, Ershad F, Zhao M, et al. Wearable electronics for skin wound monitoring and healing. Soft Sci 2022;2:9.
2. Chen J, Zhu Y, Chang X, et al. Recent progress in essential functions of soft electronic skin. Adv Funct Mater 2021;31:2104686.
3. Zhu J, Zhou C, Zhang M. Recent progress in flexible tactile sensor systems: from design to application. Soft Sci 2021;1:3.
4. Vallem V, Sargolzaeiaval Y, Ozturk M, Lai YC, Dickey MD. Energy harvesting and storage with soft and stretchable materials. Adv Mater 2021;33:e2004832.
5. Yu J, Zhang K, Deng Y. Recent progress in pressure and temperature tactile sensors: principle, classification, integration and outlook. Soft Sci 2021;1:6.
6. Gui Q, He Y, Wang Y. Soft electronics based on liquid conductors. Adv Electron Mater 2021;7:2000780.
7. Wolf MP, Salieb-beugelaar GB, Hunziker P. PDMS with designer functionalities-properties, modifications strategies, and applications. Progr Polym Sci 2018;83:97-134.
8. Qi D, Zhang K, Tian G, Jiang B, Huang Y. Stretchable electronics based on PDMS substrates. Adv Mater 2021;33:e2003155.
9. Zhang K, Shi X, Chen J, Xiong T, Jiang B, Huang Y. Self-healing and stretchable PDMS-based bifunctional sensor enabled by synergistic dynamic interactions. Chem Eng J 2021;412:128734.
10. Yang Y, Cao Z, He P, Shi L, Sun J. Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. Nano Energy 2019;66:104134.
11. Cai Y, Zhang X, Wang G, et al. A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin. Nano Energy 2021;81:105663.
12. Wei Q, Chen G, Pan H, et al. MXene-sponge based high-performance piezoresistive sensor for wearable biomonitoring and real-time tactile sensing. Small Methods 2022;6:e2101051.
13. Zhou Y, Zhan P, Ren M, et al. Significant stretchability enhancement of a crack-based strain sensor combined with high sensitivity and superior durability for motion monitoring. ACS Appl Mater Interfaces 2019;11:7405-14.
14. Zhang Y, Zhu X, Liu Y, et al. Ultra-stretchable monofilament flexible sensor with low hysteresis and linearity based on MWCNTs/Ecoflex composite materials. Macro Mater Eng 2021;306:2100113.
15. Yue X, Yang J, Gao J, et al. Wearable hydroxylated MWCNTs/ecoflex composite strain sensor with high comprehensive performance based on electron irradiation. Compos Sci Technol 2022;226:109537.
16. Wang Y, Yokota T, Someya T. Electrospun nanofiber-based soft electronics. NPG Asia Mater 2021;13:22.
17. Cho KW, Sunwoo SH, Hong YJ, et al. Soft bioelectronics based on nanomaterials. Chem Rev 2022;122:5068-143.
18. Lyu Q, Gong S, Yin J, Dyson JM, Cheng W. Soft wearable healthcare materials and devices. Adv Healthc Mater 2021;10:e2100577.
19. Kim MG, Brown DK, Brand O. Nanofabrication for all-soft and high-density electronic devices based on liquid metal. Nat Commun 2020;11:1002.
20. Peng S, Yu Y, Wu S, Wang CH. Conductive polymer nanocomposites for stretchable electronics: material selection, design, and applications. ACS Appl Mater Interfaces 2021;13:43831-54.
21. Mclellan K, Yoon Y, Leung SN, Ko SH. Recent progress in transparent conductors based on nanomaterials: advancements and challenges. Adv Mater Technol 2020;5:1900939.
22. Wang C, Wang C, Huang Z, Xu S. Materials and structures toward soft electronics. Adv Mater 2018;30:e1801368.
23. Chiong JA, Tran H, Lin Y, Zheng Y, Bao Z. Integrating emerging polymer chemistries for the advancement of recyclable, biodegradable, and biocompatible electronics. Adv Sci (Weinh) 2021;8:e2101233.
24. Zhang Q, Song M, Xu Y, Wang W, Wang Z, Zhang L. Bio-based polyesters: recent progress and future prospects. Progress in Polymer Science 2021;120:101430.
25. Davenport Huyer L, Bannerman AD, Wang Y, et al. One-pot synthesis of unsaturated polyester bioelastomer with controllable material curing for microscale designs. Adv Healthc Mater 2019;8:e1900245.
26. Chen CJ, Huang BW, Tseng PJ, et al. Low-mass liquid crystalline materials blended in recycled thermoplastic polyester elastomer for corrosion inhibitor application. Polymers (Basel) 2021;13:3188.
27. Satti SM, Shah AA. Polyester-based biodegradable plastics: an approach towards sustainable development. Lett Appl Microbiol 2020;70:413-30.
28. Tang S, Li J, Wang R, et al. Current trends in bio-based elastomer materials. SusMat 2022;2:2-33.
29. Siehr A, Flory C, Callaway T, Schumacher RJ, Siegel RA, Shen W. Implantable and degradable thermoplastic elastomer. ACS Biomater Sci Eng 2021;7:5598-610.
30. De Hoe GX, Zumstein MT, Tiegs BJ, et al. Sustainable polyester elastomers from lactones: synthesis, properties, and enzymatic hydrolyzability. J Am Chem Soc 2018;140:963-73.
31. Wang D, Tang Z, Wang Z, Zhang L, Guo B. A bio-based, robust and recyclable thermoset polyester elastomer by using an inverse vulcanised polysulfide as a crosslinker. Polym Chem 2022;13:485-91.
32. Wei T, Lei L, Kang H, et al. Tough Bio-based elastomer nanocomposites with high performance for engineering applications. Adv Eng Mater 2012;14:112-8.
33. Kang H, Li X, Xue J, et al. Preparation and characterization of high strength and noncytotoxic bioelastomers containing isosorbide. RSC Adv 2014;4:19462.
34. Gao Y, Xue J, Zhang L, Wang Z. Synthesis of bio-based polyester elastomers and evaluation of their in vivo biocompatibility and biodegradability as biomedical materials. Biomater Sci 2022;10:3924-34.
35. Li B, Ye S, Stewart IE, Alvarez S, Wiley BJ. Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%. Nano Lett 2015;15:6722-6.
36. Zhou H, Lai J, Jin X, et al. Intrinsically adhesive, highly sensitive and temperature tolerant flexible sensors based on double network organohydrogels. Chem Eng J 2021;413:127544.
37. Zhou H, Lai J, Zheng B, et al. From glutinous-rice-inspired adhesive organohydrogels to flexible electronic devices toward wearable sensing, power supply, and energy storage. Adv Funct Materials 2022;32:2108423.
38. Chang MH, Cho HA, Kim YS, Lee EJ, Kim JY. Thin and long silver nanowires self-assembled in ionic liquids as a soft template: electrical and optical properties. Nanoscale Res Lett 2014;9:330.
39. Peng Y, Zhao L, Yang C, et al. Super tough and strong self-healing elastomers based on polyampholytes. J Mater Chem A 2018;6:19066-74.
40. Yiming B, Han Y, Han Z, et al. A mechanically robust and versatile liquid-free ionic conductive elastomer. Adv Mater 2021;33:e2006111.
41. Lu C, Wang C, Wang J, Yong Q, Chu F. Integration of hydrogen bonding interaction and Schiff-base chemistry toward self-healing, anti-freezing, and conductive elastomer. Chem Eng J 2021;425:130652.
42. Wang M, Lai Z, Jin X, Sun T, Liu H, Qi H. Multifunctional liquid-free ionic conductive elastomer fabricated by liquid metal induced polymerization. Adv Funct Mater 2021;31:2101957.
43. Sun H, Dai K, Zhai W, et al. A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure. ACS Appl Mater Interfaces 2019;11:36052-62.