REFERENCES

1. Onnes HK. Further experiments with liquid helium, C - On the change of electric resistance of pure metals at very low temperatures etc IV - The resistance of pure mercury at helium temperatures. The Amsterdam: Koninklijke Akademie Van Wetenschappen Te Amsterdam; 1910. p. 1274-6.

2. Onnes HK. Further experiments with liquid helium D - On the change of the electrical resistance of pure metals at very low temperatures, etc V - The disappearance of the resistance of mercury. The Amsterdam: Koninklijke Akademie Van Wetenschappen Te Amsterdam; 1911. p. 113-5.

3. Meissner W, Ochsenfeld R. Ein neuer Effekt bei Eintritt der Supraleitfahigkeit. Naturwissenschaften 1933;21:787-8.

4. Josephson B. Possible new effects in superconductive tunnelling. Phys Lett 1962;1:251-3.

5. Petley BW. The Josephson effects. Contemp Phys 1969;10:139-58.

6. Mooij JE, Orlando TP, Levitov L, Tian L, van der Wal CH, Lloyd S. Josephson persistent-current qubit. Science 1999;285:1036-9.

7. Bardeen J, Cooper LN, Schrieffer JR. Theory of Superconductivity. Phys Rev 1957;108:1175-204.

8. Abrikosov AA. On the magnetic properties of superconductors of the second group. Soviet Physics Jetp-Ussr 1957;5:1174-83.

9. Bednorz JG, Muller KA. Possible highT c superconductivity in the Ba-La-Cu-O system. Condens Matter 1986;64:189-93.

10. Wu MK, Ashburn JR, Torng CJ, et al. Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure. Phys Rev Lett 1987;58:908-10.

11. Zhao Z X, Chen L Q, Yang Q S, et al. Superconductivity above liquid-nitrogen temperature in new oxide systems. Kexue Tongbao 1987;32:1098-102.

12. Maeda H, Tanaka Y, Fukutomi M, Asano T. A new high-Tc oxide superconductor without a rare earth element. Jpn J Appl Phys 1988;27:L209-10.

13. Ayai N, Hayashi K, Yasuda K. Development of Bi-2223 superconducting wires for AC applications. IEEE Trans Appl Supercond 2005;15:2510-3.

14. Scanlan R, Malozemoff A, Larbalestier D. Superconducting materials for large scale applications. Proc IEEE 2004;92:1639-54.

15. Larbalestier D, Gurevich A, Feldmann DM, Polyanskii A. High-Tc superconducting materials for electric power applications. Nature 2001;414:368-77.

16. Choi SM, Lee JW, Shin GH, et al. Characteristics of high-J(c) GdBCO coated conductors fabricated by the RCE-DR process. IEEE Trans Appl Supercond 2013;23:8001004.

17. Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J. Superconductivity at 39 K in magnesium diboride. Nature 2001;410:63-4.

18. Buzea C, Yamashita T. Review of the superconducting properties of MgB2. Supercond Sci Technol 2001;14:R115-46.

19. Kortus J, Mazin II, Belashchenko KD, Antropov VP, Boyer LL. Superconductivity of metallic boron in MgB2. Phys Rev Lett 2001;86:4656-9.

20. Kamihara Y, Watanabe T, Hirano M, Hosono H. Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. J Am Chem Soc 2008;130:3296-7.

21. Wen H, Mu G, Fang L, Yang H, Zhu X. Superconductivity at 25 K in hole-doped (La1-x Srx)OFeAs. Europhys Lett 2008;82:17009.

22. Sasmal K, Lv B, Lorenz B, et al. Superconducting Fe-based compounds (A1-xSrx)Fe2As2 with A=K and Cs with transition temperatures up to 37 K. Phys Rev Lett 2008;101:107007.

23. Mai ZH, Chen LQ, Chu X, et al. The identification of 2 superconducting phases in the Tl-Ba-Ca-Cu oxide system. Superconduct Sci Technol 1988;1:94-6.

24. Eggert JH, Hu JZ, Mao HK, Beauvais L, Meng RL, Chu CW. Compressibility of the HgBa2Can-1CunO2n+2+ delta (n = 1,2,3) high-temperature superconductors. Phys Rev B Condens Matter 1994;49:15299-304.

25. Nuñez-Regueiro M, Tholence JL, Antipov EV, Capponi JJ, Marezio M. Pressure-induced enhancement of tc above 150 k in hg-1223. Science 1993;262:97-9.

26. Crisan A. Vortices and nanostructured superconductors. Cham: Spring; 2017. p. 1-259.

27. Malozemoff AP, Fleshler S, Rupich M, et al. Progress in high temperature superconductor coated conductors and their applications. Supercond Sci Technol 2008;21:034005.

28. Rupich MW, Verebelyi DT, Zhang W, Kodenkandath T, Li X. Metalorganic deposition of YBCO films for second-generation high-temperature superconductor wires. MRS Bull 2004;29:572-8.

29. Lee S, Petrykin V, Molodyk A, et al. Development and production of second generation high Tc superconducting tapes at SuperOx and first tests of model cables. Supercond Sci Technol 2014;27:044022.

30. Selvamanickam V, Chen Y, Xiong X, et al. Recent progress in second-generation HTS conductor scale-up at superpower. IEEE Trans Appl Supercond 2007;17:3231-4.

31. Selvamanickam V, Chen Y, Kesgin I, et al. Progress in performance improvement and new research areas for cost reduction of 2G HTS wires. IEEE Trans Appl Supercond 2011;21:3049-54.

32. Zhao Y, Zhu J, Jiang G, et al. Progress in fabrication of second generation high temperature superconducting tape at Shanghai Superconductor Technology. Supercond Sci Technol 2019;32:044004.

33. Yi-yuan Xie, Marchevsky M, Xun Zhang, et al. Second-generation HTS conductor design and engineering for electrical power applications. IEEE Trans Appl Supercond 2009;19:3009-13.

34. Yokoyama S, Miura H, Matsuda T, et al. Design and cooling properties of high stable field REBCO superconducting magnet for MRI. IEEE Trans Appl Supercond 2020;30:1-4.

35. Feighan JPF, Kursumovic A, Macmanus-driscoll JL. Materials design for artificial pinning centres in superconductor PLD coated conductors. Supercond Sci Technol 2017;30:123001.

36. Siegrist T, Sunshine S, Murphy DW, Cava RJ, Zahurak SM. Crystal structure of the high-Tc superconductor Ba2YCu3O9- delta. Phys Rev B Condens Matter 1987;35:7137-9.

37. Calestani G, Rizzoli C. Crystal structure of the YBa2Cu3O7 superconductor by single-crystal X-ray diffraction. Nature 1987;328:606-7.

38. Mei Y, Green SM, Reynolds GG, Wiczynski T, Luo HL, Politis C. Magnetic properties of GdBa2Cu3O7-x in the normal and superconducting states. Condensed Matter 1987;67:303-5.

39. Jasiolek G, Niculescu H, Pajaczkowska A. XES studies of YBa2Cu3Oy and GdBa2Cu3Oy, single crystals. Physica C Superconductivity 1988;153-155:137-8.

40. Hull J, Murakami M. Applications of bulk high-temperature Superconductors. Proc IEEE 2004;92:1705-18.

41. Fleshler S, Buczek D, Carter B, et al. Scale-up of 2G wire manufacturing at American Superconductor Corporation. Physica C Superconductivity 2009;469:1316-21.

42. Iijima Y, Onabe K, Futaki N, et al. Structural and transport properties of biaxially aligned YBa2Cu3O7-x films on polycrystalline Ni-based alloy with ion-beam-modified buffer layers. J Appl Phys 1993;74:1905-11.

43. Goyal A, Norton D, Christen D, et al. Epitaxial superconductors on rolling-assisted biaxially-textured substrates (RABiTS): a route towards high critical current density wire. Appl Superconduct 1996;4:403-27.

44. Goyal A, Lee D, List F, et al. Recent progress in the fabrication of high-Jc tapes by epitaxial deposition of YBCO on RABiTS. Physica C Superconductivity 2001;357-360:903-13.

45. Rupich M, Schoop U, Verebelyi D, et al. YBCO coated conductors by an MOD/RABiTS/spl trade/ process. IEEE Trans Appl Supercond 2003;13:2458-61.

46. Goyal A, Paranthaman MP, Schoop U. The RABiTS approach: using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors. MRS Bull 2004;29:552-61.

47. Wu XD, Foltyn SR, Arendt P, et al. High current YBa2Cu3O7-δ thick films on flexible nickel substrates with textured buffer layers. Appl Phys Lett 1994;65:1961-3.

48. Wang CP, Do KB, Beasley MR, Geballe TH, Hammond RH. Deposition of in-plane textured MgO on amorphous Si3N4 substrates by ion-beam-assisted deposition and comparisons with ion-beam-assisted deposited yttria-stabilized-zirconia. Appl Phys Lett 1997;71:2955-7.

49. Arendt PN, Foltyn SR. Biaxially textured IBAD-MgO templates for YBCO-coated conductors. MRS Bull 2004;29:543-50.

50. Obradors X, Puig T, Pomar A, et al. Progress towards all-chemical superconducting YBa2Cu3O7-coated conductors. Supercond Sci Technol 2006;19:S13-26.

51. Hasegawa K, Fujino K, Mukai H, et al. Biaxially aligned YBCO film tapes fabricated by all pulsed laser deposition. Appl Superconductivity 1996;4:487-93.

52. Bauer M, Semerad R, Kinder H. YBCO films on metal substrates with biaxially aligned MgO buffer layers. IEEE Trans Appl Supercond 1999;9:1502-5.

53. Iijima Y, Tanabe N, Kohno O, Ikeno Y. In-plane aligned YBa2Cu3O7-x thin films deposited on polycrystalline metallic substrates. Appl Phys Lett 1992;60:769-71.

54. Goyal A, Norton DP, Budai JD, et al. High critical current density superconducting tapes by epitaxial deposition of YBa2Cu3O x thick films on biaxially textured metals. Appl Phys Lett 1996;69:1795-7.

55. Prusseit W, Nemetschek R, Hoffmann C, Sigl G, Lumkemann A, Kinder H. ISD process development for coated conductors. Phys C Superconduct Appl 2005;426-431:866-71.

56. Aabdin Z, Dürrschnabel M, Bauer M, Semerad R, Prusseit W, Eibl O. Growth behavior of superconducting DyBa2Cu3O7-x thin films deposited by inclined substrate deposition for coated conductors. Acta Materialia 2012;60:6592-600.

57. Zeng J, Ignatiev A, Zhou Y, Salama K. A single oxide buffer layer on a cube-textured Ni substrate for the development of YBCO coated conductors by photo-assisted MOCVD. Supercond Sci Technol 2006;19:772-6.

58. Holesinger T, Foltyn S, Arendt P, et al. A comparison of buffer layer architectures on continuously processed YBCO coated conductors based on the IBAD YSZ process. IEEE Trans Appl Supercond 2001;11:3359-64.

59. Wang SS, Han Z, Schmidt W, et al. Chemical solution growth of CeO2 buffer and YBCO layers on IBAD-YSZ/Hastelloy templates. Supercond Sci Technol 2005;18:1468-72.

60. Xiong J, Tao BW, Qin WF, Tang JL, Han X, Li YR. Reel-to-reel continuous simultaneous double-sided deposition of highly textured CeO 2 templates for YBa2Cu3O7-δ coated conductors. Supercond Sci Technol 2008;21:025016.

61. Huhne R, Selbmann D, Eickemeyer J, Hänisch J, Holzapfel B. Preparation of buffer layer architectures for YBa2Cu3O7-x coated conductors based on surface oxidized Ni tapes. Supercond Sci Technol 2006;19:169-74.

62. Cai C, Yang Z, Guo Y, et al. The new power transmission material-REBaCuO high-temperature superconducting coated conductor. Phys Lett 2020;49:747-54.

63. Selvamanickam V, Chen Y, Xiong X, et al. High performance 2G wires: from R&D to pilot-scale manufacturing. IEEE Trans Appl Supercond 2009;19:3225-30.

64. Selvamanickam V, Chen Y, Xiong X, et al. Progress in second-generation HTS wire development and manufacturing. Phys C Supercond 2008;468:1504-9.

65. Lee J, Lee H, Lee J, Choi S, Yoo S, Moon S. RCE-DR, a novel process for coated conductor fabrication with high performance. Supercond Sci Technol 2014;27:044018.

66. Kim T, Lee J, Lee Y, Moon S. Development of an RGB color analysis method for controlling uniformity in a long-length GdBCO coated conductor. Supercond Sci Technol 2015;28:124006.

67. Rupich MW, Li X, Thieme C, et al. Advances in second generation high temperature superconducting wire manufacturing and R&D at American Superconductor Corporation. Supercond Sci Technol 2010;23:014015.

68. Shiohara Y, Taneda T, Yoshizumi M. Overview of materials and power applications of coated conductors project. Jpn J Appl Phys 2012;51:010007.

69. Tsuchiya K, Kikuchi A, Terashima A, et al. Critical current measurement of commercial REBCO conductors at 4.2 K. Cryogenics 2017;85:1-7.

70. Weiss JD, van der Laan DC, Hazelton D, et al. Introduction of the next generation of CORC® wires with engineering current density exceeding 650 A mm-2 at 12 T based on SuperPower’s ReBCO tapes containing substrates of 25 μm thickness. Supercond Sci Technol 2020;33:044001.

71. Tsuchiya K, Wang X, Fujita S, et al. Superconducting properties of commercial REBCO-coated conductors with artificial pinning centers. Supercond Sci Technol 2021;34:105005.

72. Usoskin A, Betz U, Gnilsen J, Noll-baumann S, Schlenga K. Long-length YBCO coated conductors for ultra-high field applications: gaining engineering current density via pulsed laser deposition/alternating beam-assisted deposition route. Supercond Sci Technol 2019;32:094005.

73. Jiang G, Zhao Y, Zhu J, et al. Recent development and mass production of high Je 2G-HTS tapes by using thin hastelloy substrate at Shanghai Superconductor Technology. Supercond Sci Technol 2020;33:074005.

74. Soler L, Jareño J, Banchewski J, et al. Ultrafast transient liquid assisted growth of high current density superconducting films. Nat Commun 2020;11:344.

75. Obradors X, Puig T. Coated conductors for power applications: materials challenges. Supercond Sci Technol 2014;27:044003.

76. Zeng L, Lu YM, Liu ZY, Chen CZ, Gao B, Cai CB. Surface texture and interior residual stress variation induced by thickness of YBa2Cu3O7-δ thin films. J Appl Phys 2012;112:053903.

77. Jia QX, Foltyn SR, Arendt PN, Smith JF. High-temperature superconducting thick films with enhanced supercurrent carrying capability. Appl Phys Lett 2002;80:1601-3.

78. Sun MJ, Yang WT, Liu ZY, et al. Ag doping effects on Y0.5Gd0.5Ba2Cu3O7-δ multilayers derived by low-fluorine metalorganic solution deposition. Mater Res Express 2015;2:096001.

79. Lin J, Yang W, Gu Z, et al. Improved epitaxial texture of thick YBa2Cu3O7-δ/GdBa2Cu3O7-δ films with periodic stress releasing. Supercond Sci Technol 2015;28:045001.

80. Lin J, Liu X, Cui C, et al. A review of thickness-induced evolutions of microstructure and superconducting performance of REBa2Cu3O7-δ coated conductor. Adv Manuf 2017;5:165-76.

81. Xu A, Delgado L, Heydari Gharahcheshmeh M, Khatri N, Liu Y, Selvamanickam V. Strong correlation between Jc (T, H||c) and Jc (77 K, 3T||c) in Zr-added (Gd, Y)BaCuO coated conductors at temperatures from 77 down to 20 K and fields up to 9 T. Supercond Sci Technol 2015;28:082001.

82. Selvamanickam V, Gharahcheshmeh MH, Xu A, Zhang Y, Galstyan E. Critical current density above 15 MA cm-2 at 30 K, 3 T in 2.2 μm thick heavily-doped (Gd,Y)Ba2Cu3O x superconductor tapes. Supercond Sci Technol 2015;28:072002.

83. Malozemoff AP. Progress in American superconductor’s HTS wire and optimization for fault current limiting systems. Phys C Supercond Appl 2016;530:65-7.

84. Majkic G, Pratap R, Paidpilli M, et al. In-field critical current performance of 4.0 μm thick film REBCO conductor with Hf addition at 4.2 K and fields up to 31.2 T. Supercond Sci Technol 2020;33:07LT03.

85. Dürrschnabel M, Aabdin Z, Bauer M, Semerad R, Prusseit W, Eibl O. DyBa2Cu3O7-x superconducting coated conductors with critical currents exceeding 1000 A cm-1. Supercond Sci Technol 2012;25:105007.

86. Campbell A, Evetts J. Flux vortices and transport currents in type II superconductors. Adv Phys 1972;21:199-428.

87. Blatter G, Feigel’man MV, Geshkenbein VB, Larkin AI, Vinokur VM. Vortices in high-temperature superconductors. Rev Mod Phys 1994;66:1125-388.

88. Tachiki M, Takahashi S. Anisotropy of critical current in layered oxide superconductors. Solid State Commun 1989;72:1083-6.

89. Kwok WK, Welp U, Glatz A, Koshelev AE, Kihlstrom KJ, Crabtree GW. Vortices in high-performance high-temperature superconductors. Rep Prog Phys 2016;79:116501.

90. Karapetrov G, Belkin A, Novosad V, Iavarone M, Pearson JE, Kwok WK. Adjustable superconducting anisotropy in MoGe-Permalloy hybrids. J Phys Conf Ser 2009;150:052095.

91. Tang X, Zhao Y, Wu W, Grivel J. Effect of BaZrO3/Ag hybrid doping to the microstructure and performance of fluorine-free MOD method derived YBa2Cu3O7-x superconducting thin films. J Mater Sci: Mater Electron 2015;26:1806-11.

92. Wang H, Ding F, Gu H, Zhang H, Dong Z. Microstructure and superconducting properties of (BaTiO3, Y2O3)-doped YBCO films under different firing temperatures. Rare Met 2017;36:37-41.

93. Wang H, Ding F, Gu H, Zhang T. Strongly enhanced flux pinning in the YBa2Cu3O7-x films with the co-doping of BaTiO3 nanorod and Y2O3 nanoparticles at 65 K. Chinese Phys B 2015;24:097401.

94. Jin S, Tiefel T, Kammlott G, Fastnacht R, Graebner J. Superconducting properties of YBa2Cu3O7-δ with partial rare earth substitution. Physica C Supercond 1991;173:75-9.

95. Devi AR, Bai VS, Patanjali PV, Pinto R, Kumar NH, Malik SK. Enhanced critical current density due to flux pinning from lattice defects in pulsed laser ablated Y1-x Dy x Ba2Cu3O7-δ thin films. Supercond Sci Technol 2000;13:935-9.

96. Jin L, Lu Y, Yan W, Yu Z, Wang Y, Li C. Fabrication of GdBa2Cu3O7-x films by TFA-MOD process. J Alloys Compound 2011;509:3353-6.

97. Zhou H, Maiorov B, Wang H, et al. Improved microstructure and enhanced low-field Jc in (Y0.67Eu0.33)Ba2 Cu3O7-δ films. Supercond Sci Technol 2008;21:025001.

98. Li M, Fang Q, Hu X, et al. Microstructures property and improved Jc of Eu-doped YBa2Cu3.6O7-δ thin films by trifluoroacetate metal organic deposition process. J Supercond Nov Magn 2017;30:1137-43.

99. Nie JC, Yamasaki H, Yamada H, Nakagawa Y, Develos-bagarinao K, Mawatari Y. Evidence for c-axis correlated vortex pinning in Y Ba2Cu3O7 films on sapphire buffered with an atomically flat CeO2 layer having a high density of nanodots. Supercond Sci Technol 2004;17:845-52.

100. Aytug T, Paranthaman M, Gapud AA, et al. Enhancement of flux pinning and critical currents in YBa2Cu3O7-δ films by nanoscale iridium pretreatment of substrate surfaces. J Appl Phys 2005;98:114309.

101. Baca FJ, Fisher D, Emergo RLS, Wu JZ. Pore formation and increased critical current density in YBa2Cu3O x films deposited on a substrate surface modulated by Y2O3 nanoparticles. Supercond Sci Technol 2007;20:554-8.

102. Mikheenko P, Sarkar A, Dang V, Tanner J, Abell J, Crisan A. c-Axis correlated extended defects and critical current in YBa2Cu3O films grown on Au and Ag-nano dot decorated substrates. Physica C Supercond 2009;469:798-804.

103. Wang Y, Li Y, Liu L, Xu D. Improvement of flux pinning in GdBa2Cu3O7-δ thin film by nanoscale ferromagnetic La0.67Sr0.33MnO3 pretreatment of substrate surface. Ceram Int 2018;44:225-30.

104. Jha AK, Khare N, Pinto R. Influence of interfacial LSMO nanoparticles/layer on the vortex pinning properties of YBCO thin film. J Supercond Nov Magn 2014;27:1021-6.

105. Matsui H, Ogiso H, Yamasaki H, et al. Enhancement of in-field critical current density by irradiation of MeV-energy ions in YBCO films prepared by fluorine-free metal-organic deposition. 24th International Symposium on Superconductivity (ISS). Tokyo, Japan: Elsevier Science; 2011.

106. Matsui H, Ogiso H, Yamasaki H, et al. 4-fold enhancement in the critical current density of YBa2Cu3O7 films by practical ion irradiation. Appl Phys Lett 2012;101:232601.

107. Matsui H, Ootsuka T, Ogiso H, et al. Enhancement of critical current density in YBa2Cu3O7 films using a semiconductor ion implanter. J Appl Phys 2015;117:043911.

108. Huang D, Gu H, Shang H, et al. Enhancement in the critical current density of BaTiO3 -doped YBCO films by low-energy (60 keV) proton irradiation. Supercond Sci Technol 2021;34:045001.

109. Eley S, Leroux M, Rupich MW, et al. Decoupling and tuning competing effects of different types of defects on flux creep in irradiated YBa2Cu3O7-δ coated conductors. Supercond Sci Technol 2017;30:015010.

110. Rupich MW, Sathyamurthy S, Fleshler S, et al. Engineered pinning landscapes for enhanced 2G coil wire. IEEE Trans Appl Supercond 2016;26:1-4.

111. MacManus-Driscoll JL, Foltyn SR, Jia QX, et al. Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7-x + BaZrO3. Nat Mater 2004;3:439-43.

112. Gutiérrez J, Llordés A, Gázquez J, et al. Strong isotropic flux pinning in solution-derived YBa2Cu3O7-x nanocomposite superconductor films. Nat Mater 2007;6:367-73.

113. Wang F, Tian H. BaZrO3 (BZO) nanoparticles as effective pinning centers for YBa2Cu3O7-δ (YBCO) superconducting thin films. J Mater Sci Mater Electron 2019;30:4137-43.

114. Selvamanickam V, Gharahcheshmeh MH, Xu A, Galstyan E, Delgado L, Cantoni C. High critical currents in heavily doped (Gd,Y)Ba2Cu3Ox superconductor tapes. Appl Phys Lett 2015;106:032601.

115. Xu A, Khatri N, Liu Y, et al. Broad temperature pinning study of 15 mol.% Zr-Added (Gd, Y)-Ba-Cu-O MOCVD coated conductors. IEEE Trans Appl Supercond 2015;25:1-5.

116. Teranishi R, Otaguro K, Horita H, et al. Minimization of BaHfO3 flux pinning centers in YBa2Cu3Oy films by metal organic deposition process. IEEE Trans Appl Supercond 2016;26:1-3.

117. Liu L, Wang W, Yao Y, Wu X, Lu S, Li Y. Formation of qualified BaHfO3 doped Y0.5Gd0.5Ba2Cu3O7-δ film on CeO2 buffered IBAD-MgO tape by self-seeding pulsed laser deposition. Appl Surf Sci 2018;439:1034-9.

118. Dong Z, Ding F, Zhang J, et al. Enhanced flux pinning of solution-derived YBa2Cu3 O7-x nanocomposite films with novel ultra-small BaMnO3 nanocrystals. Supercond Sci Technol 2019;32:025004.

119. Celentano G, Rizzo F, Augieri A, et al. YBa2Cu3O7-x films with Ba2 Y(Nb,Ta)O6 nanoinclusions for high-field applications. Supercond Sci Technol 2020;33:044010.

120. Gondo M, Yoshida M, Yoshida Y, et al. Nanostructures and flux pinning properties in YBa2Cu3O7-y thin films with double perovskite Ba2 LuNbO6 nanorods. J Appl Phys 2021;129:195301.

121. Hazelton DW, Selvamanickam V. SuperPower’s YBCO coated high-temperature superconducting (HTS) wire and magnet applications. Proc IEEE 2009;97:1831-6.

122. Chen Y, Hazelton DW, Venkat S. High field magnet made of second generation high temperature superconducting wire. In 11th international conference on electrical machines and systems. Wuhan: Huazhong University of Science and Technology; 2008.

123. Yoon S, Cheon K, Lee H, et al. The performance of the conduction cooled 2G HTS magnet wound without turn to turn insulation generating 4.1T in 102mm bore. Physica C Supercond 2013;494:242-5.

124. Yoon S, Kim J, Cheon K, Lee H, Hahn S, Moon S. 26 T 35 mm all-GdBa2Cu3O7-x multi-width no-insulation superconducting magnet. Supercond Sci Technol 2016;29:04LT04.

125. Kim K, Bhattarai KR, Jang JY, et al. Design and performance estimation of a 35 T 40 mm no-insulation all-REBCO user magnet. Supercond Sci Technol 2017;30:065008.

126. Ding FZ, Zhang JY, Tan YF, et al. Development of a 4 T (46 K) 100 mm high-temperature superconducting coil made of homemade MOCVD-YBCO coated conductors. Acta Phys Sin 2018;67:20171491.

127. Kajita K, Iguchi S, Xu Y, et al. Degradation of a REBCO coil due to cleavage and peeling originating from an electromagnetic force. IEEE Trans Appl Supercond 2016;26:1-6.

128. Yanagisawa Y, Kajita K, Iguchi S, et al. 27.6 T generation using Bi-2223/REBCO superconducting coils. IEEE/CSC, 2016. Available from: https://snf.ieeecsc.org/sites/ieeecsc.org/files/documents/snf/abstracts/edSTH42-HP112_Yanagisawa%2CY_27.6%20T_ed%20generation-final_071816.pdf [Last accessed on 25 July 2022].

129. Markiewicz WD, Larbalestier DC, Weijers HW, et al. Design of a superconducting 32 T magnet with REBCO high field coils. IEEE Trans Appl Supercond 2012;22:4300704.

130. Liu J, Song S, Wang Q, Zhang Q. Critical current analysis of an YBCO insert for ultrahigh-field all-superconducting magnet. IEEE Trans Appl Supercond 2016;26:1-6.

131. Liu J, Li Y. High-field insert with Bi- and Y-based tapes for 25-T all-superconducting magnet. IEEE Trans Appl Supercond 2016;26:1-5.

132. Liu J, Wang L, Qin L, Wang Q, Dai Y. Design, Fabrication, and test of a 12 T REBCO insert for a 27 T all-superconducting magnet. IEEE Trans Appl Supercond 2020;30:1-7.

133. Liu J, Wang Q, Qin L, et al. World record 32.35 tesla direct-current magnetic field generated with an all-superconducting magnet. Supercond Sci Technol 2020;33:03LT01.

134. Suetomi Y, Yoshida T, Takahashi S, et al. Quench and self-protecting behaviour of an intra-layer no-insulation (LNI) REBCO coil at 31.4 T. Supercond Sci Technol 2021;34:064003.

135. Bird M, Bole S, Eyssa Y, Gao B, Schneider-muntau H. Test results and potential for upgrade of the 45 T hybrid insert. IEEE Trans Appl Supercond 2000;10:439-42.

136. Hahn S, Kim K, Kim K, et al. 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet. Nature 2019;570:496-9.

137. Senatore C, Alessandrini M, Lucarelli A, Tediosi R, Uglietti D, Iwasa Y. Progresses and challenges in the development of high-field solenoidal magnets based on RE123 coated conductors. Supercond Sci Technol 2014;27:103001.

138. Lu W, Fang J, Li D, Wu C, Guo L. The experimental research and analysis on the quench propagation of YBCO coated conductor and coil. Physica C Supercond 2013;484:153-8.

139. Angrisani Armenio A, Augieri A, Celentano G, et al. Stability measurements on YBCO coated conductors. IEEE Trans Appl Supercond 2008;18:1293-6.

140. Paidpilli M, Selvamanickam V. Development of RE-Ba-Cu-O superconductors in the US for ultra-high field magnets. Supercond Sci Technol 2022;35:043001.

141. Wang X, Caspi S, Dietderich DR, et al. A viable dipole magnet concept with REBCO CORC® wires and further development needs for high-field magnet applications. Supercond Sci Technol 2018;31:045007.

142. Macmanus-driscoll JL, Wimbush SC. Processing and application of high-temperature superconducting coated conductors. Nat Rev Mater 2021;6:587-604.

143. Sung H, Park M, Go B, Yu I. A study on the required performance of a 2G HTS wire for HTS wind power generators. Supercond Sci Technol 2016;29:054001.

144. Zhang, Lehner TF, Fukushima T, Sakamoto H, Hazelton DW. Progress in Production and performance of second generation (2G) HTS wire for practical applications. IEEE Trans Appl Supercond 2014;24:1-5.

145. Cai C, Chi C, Li M, et al. Advance and challenge of secondary-generation high- temperature superconducting tapes for high field applications. Chin Sci Bull 2019;64:827-41.

146. Ainslie M D, George A, Shaw R, et al. Design and market considerations for axial flux superconducting electric machine design. 11th European Conference on Applied Superconductivity (EUCAS). Genoa, Italy: IOP Publishing Ltd; 2013.

147. Molodyk A, Samoilenkov S, Markelov A, et al. Development and large volume production of extremely high current density YBa2Cu3O7 superconducting wires for fusion. Sci Rep 2021;11:2084.

148. Uglietti D. A review of commercial high temperature superconducting materials for large magnets: from wires and tapes to cables and conductors. Supercond Sci Technol 2019;32:053001.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/