REFERENCES

1. Schwartz G, Tee BC, Mei J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun 2013;4:1859.

2. Arakawa M, Kudo K, Kobayashi K, Kanai H. Blood pressure measurement using piezoelectric effect by an ultrasonic probe. Sens Actuators A Phys 2019;286:146-51.

3. Dagdeviren C, Su Y, Joe P, et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat Commun 2014;5:4496.

4. Park DY, Joe DJ, Kim DH, et al. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv Mater 2017;29:1702308.

5. Wang TW, Lin SF. Wearable piezoelectric-based system for continuous beat-to-beat blood pressure measurement. Sensors (Basel) 2020;20:851.

6. Chiu Y, Lin W, Wang H, Huang S, Wu M. Development of a piezoelectric polyvinylidene fluoride (PVDF) polymer-based sensor patch for simultaneous heartbeat and respiration monitoring. Sens Actuators A Phys 2013;189:328-34.

7. Lei KF, Hsieh YZ, Chiu YY, Wu MH. The structure design of piezoelectric poly(vinylidene fluoride) (PVDF) polymer-based sensor patch for the respiration monitoring under dynamic walking conditions. Sensors (Basel) 2015;15:18801-12.

8. Su Y, Chen C, Pan H, et al. Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring. Adv Funct Mater 2021;31:2010962.

9. Jin C, Hao N, Xu Z, et al. Flexible piezoelectric nanogenerators using metal-doped ZnO-PVDF Films. Sens Actuators A Phys 2020;305:111912.

10. Chen J, Liu H, Wang W, et al. High durable, biocompatible, and flexible piezoelectric pulse sensor using single-Crystalline III-N Thin Film. Adv Funct Mater 2019;29:1903162.

11. Park JH, Jang DG, Park JW, Youm SK. Wearable sensing of in-ear pressure for heart rate monitoring with a piezoelectric sensor. Sensors (Basel) 2015;15:23402-17.

12. Guo W, Tan C, Shi K, et al. Wireless piezoelectric devices based on electrospun PVDF/BaTiO3 NW nanocomposite fibers for human motion monitoring. Nanoscale 2018;10:17751-60.

13. Khadtare S, Ko EJ, Kim YH, Lee HS, Moon DK. A flexible piezoelectric nanogenerator using conducting polymer and silver nanowire hybrid electrodes for its application in real-time muscular monitoring system. Sens Actuators A Phys 2019;299:111575.

14. Liu Z, Zheng Q, Shi Y, et al. Flexible and stretchable dual mode nanogenerator for rehabilitation monitoring and information interaction. J Mater Chem B 2020;8:3647-54.

15. Zhu J, Zhou C, Zhang M. Recent progress in flexible tactile sensor systems: from design to application. Soft Sci 2021;1:3.

16. Lee S, Bae S, Lin L, et al. Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor. Adv Funct Mater 2013;23:2445-9.

17. Lee S, Hinchet R, Lee Y, et al. Ultrathin nanogenerators as self-powered/active skin sensors for tracking eye ball motion. Adv Funct Mater 2014;24:1163-8.

18. Yang Y, Pan H, Xie G, et al. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sens Actuators A Phys 2020;301:111789.

19. Yu J, Zhang K, Deng Y. Recent progress in pressure and temperature tactile sensors: Principle, classification, integration and outlook. Soft Sci 2021;1:6.

20. Kim N, Chang Y, Chen J, et al. Piezoelectric pressure sensor based on flexible gallium nitride thin film for harsh-environment and high-temperature applications. Sens Actuators A Phys 2020;305:111940.

21. Dagdeviren C, Hwang SW, Su Y, et al. Transient, biocompatible electronics and energy harvesters based on ZnO. Small 2013;9:3398-404.

22. Chen J, Oh SK, Nabulsi N, Johnson H, Wang W, Ryou J. Biocompatible and sustainable power supply for self-powered wearable and implantable electronics using III-nitride thin-film-based flexible piezoelectric generator. Nano Energy 2019;57:670-9.

23. Chen J, Oh SK, Zou H, et al. High-output lead-free flexible piezoelectric generator using single-crystalline gan thin film. ACS Appl Mater Interfaces 2018;10:12839-46.

24. Cheng H. Preparation of [002] oriented AlN thin films by mid frequency reactive sputtering technique. Thin Solid Films 2003;425:85-9.

25. Zembutsu S, Kobayashi M. The growth of c-axis-oriented GaN films by D.C.-biased reactive sputtering. Thin Solid Films 1985;129:289-97.

26. Pawar S, Kumar A, Kaur D. Strain-induced dielectric enhancement in AlN-based multiferroic layered structure. Shap Mem Superelasticity 2020;6:24-8.

27. Schneider M, Bittner A, Schmid U. Impact of film thickness on the temperature-activated leakage current behavior of sputtered aluminum nitride thin films. Sens Actuators A Phys 2015;224:177-84.

28. Li J, Inukai K, Takahashi Y, Shin W. Synthesis and size control of monodispersed BaTiO3 - PVP nanoparticles. J Asian Ceram Soc 2018;4:394-402.

29. Gregorio R, Ueno EM. Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride) (PVDF). J Mater Sci 1999;34:4489-500.

30. Cai X, Lei T, Sun D, Lin L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv 2017;7:15382-9.

31. Gregorio R. Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J Appl Polym Sci 2006;100:3272-9.

32. Gregorio R, Cestari M. Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J Polym Sci B Polym Phys 1994;32:859-70.

33. Yilmaz G, Lu X, Ho GW. Cross-linker mediated formation of sulfur-functionalized V2O5/graphene aerogels and their enhanced pseudocapacitive performance. Nanoscale 2017;9:802-11.

34. Kim SH, Oh BM, Han TR, Jeong HJ, Sim YJ. Different movement of hyolaryngeal structures by various application of electrical stimulation in normal individuals. Ann Rehabil Med 2015;39:535-44.

35. Watts CR. Measurement of hyolaryngeal muscle activation using surface electromyography for comparison of two rehabilitative dysphagia exercises. Arch Phys Med Rehabil 2013;94:2542-8.

36. Kim N, Chen J, Wang W, et al. Highly-sensitive skin-attachable eye-movement sensor using flexible nonhazardous piezoelectric thin film. Adv Funct Mater 2021;31:2008242.

37. Yang YF, Tao LQ, Pang Y, et al. An ultrasensitive strain sensor with a wide strain range based on graphene armour scales. Nanoscale 2018;10:11524-30.

38. Zhou H, Hu H. Human motion tracking for rehabilitation - A survey. Biomed Signal Process Control 2008;3:1-18.

39. Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil 2014;11:3.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/