REFERENCES
1. Ryu H, Yoon HJ, Kim SW. Hybrid energy harvesters: toward sustainable energy harvesting. Adv Mater 2019;31:e1802898.
2. Gao M, Wang P, Jiang L, et al. Power generation for wearable systems. Energy Environ Sci 2021;14:2114-57.
3. Peng B, Zhao F, Ping J, Ying Y. Recent advances in nanomaterial-enabled wearable sensors: material synthesis, sensor design, and personal health monitoring. Small 2020;16:e2002681.
4. Vallem V, Sargolzaeiaval Y, Ozturk M, Lai YC, Dickey MD. Energy harvesting and storage with soft and stretchable materials. Adv Mater 2021;33:e2004832.
5. Qin Y, Wang X, Wang ZL. Erratum: microfibre-nanowire hybrid structure for energy scavenging. Nature 2009;457:340-340.
6. Chandrasekaran S, Bowen C, Roscow J, et al. Micro-scale to nano-scale generators for energy harvesting: self powered piezoelectric, triboelectric and hybrid devices. Phys Rep 2019;792:1-33.
8. Fan FR, Tang W, Wang ZL. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv Mater 2016;28:4283-305.
9. He J, Tritt TM. Advances in thermoelectric materials research: looking back and moving forward. Science 2017;357:eaak9997.
10. Bowen CR, Taylor J, Leboulbar E, Zabek D, Chauhan A, Vaish R. Pyroelectric materials and devices for energy harvesting applications. Energy Environ Sci 2014;7:3836-56.
11. Kovalenko MV, Protesescu L, Bodnarchuk MI. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017;358:745-50.
12. Anton SR, Sodano HA. A review of power harvesting using piezoelectric materials (2003-2006). Smart Mater Struct 2007;16:R1-R21.
13. Martins P, Lopes A, Lanceros-mendez S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 2014;39:683-706.
14. Shepelin NA, Glushenkov AM, Lussini VC, et al. New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy Environ Sci 2019;12:1143-76.
15. Wei H, Wang H, Xia Y, et al. An overview of lead-free piezoelectric materials and devices. J Mater Chem C 2018;6:12446-67.
16. Chen X, Li X, Shao J, et al. High-performance piezoelectric nanogenerators with imprinted P(VDF-TrFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors. Small 2017;13:1604245.
17. Kim K, Zhu W, Qu X, et al. 3D optical printing of piezoelectric nanoparticle-polymer composite materials. ACS Nano 2014;8:9799-806.
18. Jain A, K. J. P, Sharma AK, Jain A, Rashmi PN. Dielectric and piezoelectric properties of PVDF/PZT composites: a review. Polym Eng Sci 2015;55:1589-616.
20. Liu B, Lu B, Chen X, et al. A high-performance flexible piezoelectric energy harvester based on lead-free (Na0.5Bi0.5)TiO3-BaTiO3 piezoelectric nanofibers. J Mater Chem A 2017;5:23634-40.
21. Green MA, Ho-baillie A, Snaith HJ. The emergence of perovskite solar cells. Nature Photon 2014;8:506-14.
22. Stranks SD, Snaith HJ. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol 2015;10:391-402.
23. Wilson JN, Frost JM, Wallace SK, Walsh A. Dielectric and ferroic properties of metal halide perovskites. APL Materials 2019;7:010901.
24. Rakita Y, Cohen SR, Kedem NK, Hodes G, Cahen D. Mechanical properties of APbX3 (A = Cs or CH3NH3; X= I or Br) perovskite single crystals. MRS Commun 2015;5:623-9.
25. Ding R, Zhang X, Chen G, et al. High-performance piezoelectric nanogenerators composed of formamidinium lead halide perovskite nanoparticles and poly(vinylidene fluoride). Nano Energy 2017;37:126-35.
26. Tusiime R, Zabihi F, Tebyetekerwa M, et al. High stress-driven voltages in net-like layer-supported organic-inorganic perovskites. J Mater Chem C 2020;8:2643-58.
27. Ding R, Liu H, Zhang X, et al. Flexible piezoelectric nanocomposite generators based on formamidinium lead halide perovskite nanoparticles. Adv Funct Mater 2016;26:7708-16.
28. Kim DB, Park KH, Cho YS. Origin of high piezoelectricity of inorganic halide perovskite thin films and their electromechanical energy-harvesting and physiological current-sensing characteristics. Energy Environ Sci 2020;13:2077-86.
29. He F, Lin K, Shi D, et al. Preparation of organosilicate/PVDF composites with enhanced piezoelectricity and pyroelectricity by stretching. Compos Sci Technol 2016;137:138-47.
30. Brennan MC, Herr JE, Nguyen-Beck TS, et al. Origin of the size-dependent stokes shift in CsPbBr3 perovskite nanocrystals. J Am Chem Soc 2017;139:12201-8.
31. Huang C, Wang Y, Cheng Z, Wu Y, Li J, Deng Y. Dielectric screening enabled ultrastable luminescence in CsPbBr3 perovskite crystal encapsulated by ferroelectric Poly(vinylidene fluoride). Chem Eng J 2020;401:126120.
32. Ippili S, Jella V, Eom J, et al. An eco-friendly flexible piezoelectric energy harvester that delivers high output performance is based on lead-free MASnI3 films and MASnI3-PVDF composite films. Nano Energy 2019;57:911-23.
33. Pandey R, Sb G, Grover S, et al. Microscopic origin of piezoelectricity in lead-free halide perovskite: application in nanogenerator design. ACS Energy Lett 2019;4:1004-11.
34. Sultana A, Ghosh SK, Alam MM, et al. Methylammonium lead iodide incorporated poly(vinylidene fluoride) nanofibers for flexible piezoelectric-pyroelectric nanogenerator. ACS Appl Mater Interfaces 2019;11:27279-87.
35. Ippili S, Jella V, Eom S, Hong S, Yoon SG. Light-driven piezo- and triboelectricity in organic-Inorganic metal trihalide perovskite toward mechanical energy harvesting and self-powered sensor application. ACS Appl Mater Interfaces 2020;12:50472-83.
36. Khan AA, Rana MM, Huang G, et al. Maximizing piezoelectricity by self-assembled highly porous perovskite-polymer composite films to enable the internet of things. J Mater Chem A 2020;8:13619-29.
37. Mondal S, Paul T, Maiti S, Das BK, Chattopadhyay KK. Human motion interactive mechanical energy harvester based on all inorganic perovskite-PVDF. Nano Energy 2020;74:104870.