REFERENCES
1. Fan Z, Du D, Yao H, Ouyang J. Higher PEDOT molecular weight giving rise to higher thermoelectric property of PEDOT:PSS: a comparative study of clevios P and clevios PH1000. ACS Appl Mater Interfaces 2017;9:11732-8.
2. Fan Z, Du D, Yu Z, Li P, Xia Y, Ouyang J. Significant enhancement in the thermoelectric properties of PEDOT:PSS films through a treatment with organic solutions of inorganic salts. ACS Appl Mater Interfaces 2016;8:23204-11.
3. Li F, Cai K, Shen S, Chen S. Preparation and thermoelectric properties of reduced graphene oxide/PEDOT:PSS composite films. Synth Met 2014;197:58-61.
4. Liang L, Fan J, Wang M, Chen G, Sun G. Ternary thermoelectric composites of polypyrrole/PEDOT:PSS/carbon nanotube with unique layered structure prepared by one-dimensional polymer nanostructure as template. Compos Sci Technol 2020;187:107948.
5. Yin S, Lu W, Wu R, Fan W, Guo CY, Chen G. Poly(3,4-ethylenedioxythiophene)/Te/single-walled carbon nanotube composites with high thermoelectric performance promoted by electropolymerization. ACS Appl Mater Interfaces 2020;12:3547-53.
6. Zhao J, Tan D, Chen G. A strategy to improve the thermoelectric performance of conducting polymer nanostructures. J Mater Chem C 2017;5:47-53.
7. Yu J, Zhang K, Deng Y. Recent progress in pressure and temperature tactile sensors: Principle, classification, integration and outlook. Soft Sci 2021;1:6.
8. Nath C, Kumar A, Kuo Y, Okram GS. High thermoelectric figure of merit in nanocrystalline polyaniline at low temperatures. Appl Phys Lett 2014;105:133108.
9. Zou Q, Shang H, Huang D, et al. Improved thermoelectric performance in n-type flexible Bi2Se3+x/PVDF composite films. Soft Sci 2021;1:2.
10. Xu B, Zhang J, Yu G, Ma S, Wang Y, Wang Y. Thermoelectric properties of monolayer Sb2Te3. J Appl Phys 2018;124:165104.
11. Das D, Malik K, Deb AK, Dhara S, Bandyopadhyay S, Banerjee A. Defect induced structural and thermoelectric properties of Sb2Te3 alloy. J Appl Phys 2015;118:045102.
12. Kim N, Kee S, Lee SH, et al. Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv Mater 2014;26:2268-72, 2109.
13. Wang L, Zhang J, Guo Y, et al. Fabrication of core-shell structured poly(3,4-ethylenedioxythiophene)/carbon nanotube hybrids with enhanced thermoelectric power factors. Carbon 2019;148:290-6.
14. Fan W, Zhang Y, Guo C, Chen G. Toward high thermoelectric performance for polypyrrole composites by dynamic 3-phase interfacial electropolymerization and chemical doping of carbon nanotubes. Compos Sci Technol 2019;183:107794.
15. Wu J, Sun Y, Pei W, Huang L, Xu W, Zhang Q. Polypyrrole nanotube film for flexible thermoelectric application. Synth Met 2014;196:173-7.
16. Wu J, Sun Y, Xu W, Zhang Q. Investigating thermoelectric properties of doped polyaniline nanowires. Synth Met 2014;189:177-82.
17. Deng L, Huang X, Lv H, Zhang Y, Chen G. Unravelling the mechanism of processing protocols induced microstructure evolution on polymer thermoelectric performance. Appl Mater Today 2021;22:100959.
18. Qu D, Huang X, Li X, Wang H, Chen G. Annular flexible thermoelectric devices with integrated-module architecture. npj Flex Electron 2020:4.
19. Wang H, Yu C. Organic thermoelectrics: materials preparation, performance optimization, and device integration. Joule 2019;3:53-80.
20. Xia Y, Sun K, Ouyang J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv Mater 2012;24:2436-40.
21. Zhang Y, Zheng D, Pang H, Tang J, Li Z. The effect of molecular chain polarity on electric field-induced aligned conductive carbon nanotube network formation in polymer melt. Compos Sci Technol 2012;72:1875-81.
22. Zhang Y, Zhang Q, Chen G. Carbon and carbon composites for thermoelectric applications. Carbon Energy 2020;2:408-36.
23. Wang X, Liang L, Lv H, Zhang Y, Chen G. Elastic aerogel thermoelectric generator with vertical temperature-difference architecture and compression-induced power enhancement. Nano Energy 2021;90:106577.
24. Li Z, Deng L, Lv H, et al. Mechanically robust and flexible films of ionic liquid-modulated polymer thermoelectric composites. Adv Funct Mater 2021;31:2104836.
25. Zhang Y, Deng L, Lv H, Chen G. Toward improved trade-off between thermoelectric and mechanical performances in polycarbonate/single-walled carbon nanotube composite films. npj Flex Electron 2020;4:26.
26. Taroni PJ, Santagiuliana G, Wan K, et al. Toward stretchable self-powered sensors based on the thermoelectric response of PEDOT:PSS/polyurethane blends. Adv Funct Mater 2018;28:1704285.
27. Deng W, Deng L, Li Z, Zhang Y, Chen G. Synergistically boosting thermoelectric performance of PEDOT:PSS/SWCNT composites via the Ion-exchange effect and promoting SWCNT dispersion by the ionic liquid. ACS Appl Mater Interfaces 2021;13:12131-40.
28. Zhang Y, Fuentes CA, Koekoekx R, et al. Spreading dynamics of molten polymer drops on glass substrates. Langmuir 2017;33:8447-54.
29. Friedel B, Keivanidis PE, Brenner TJK, et al. Effects of layer thickness and annealing of PEDOT:PSS layers in organic photodetectors. Macromolecules 2009;42:6741-7.
30. Gueye MN, Carella A, Massonnet N, et al. Structure and dopant engineering in PEDOT thin films: practical tools for a dramatic conductivity enhancement. Chem Mater 2016;28:3462-8.
31. Mazaheripour A, Majumdar S, Hanemann-rawlings D, et al. Tailoring the Seebeck coefficient of PEDOT:PSS by controlling ion stoichiometry in ionic liquid additives. Chem Mater 2018;30:4816-22.
32. Atoyo J, Burton MR, McGettrick J, Carnie MJ. Enhanced electrical conductivity and Seebeck coefficient in PEDOT:PSS via a two-step ionic liquid and NaBH4 treatment for organic thermoelectrics. Polymers (Basel) 2020;12:559.
33. Yemata TA, Zheng Y, Kyaw AKK, et al. Improved thermoelectric properties and environmental stability of conducting PEDOT:PSS films post-treated with imidazolium ionic liquids. Front Chem 2019;7:870.
34. Fan W, Liang L, Zhang B, Guo C, Chen G. PEDOT thermoelectric composites with excellent power factors prepared by 3-phase interfacial electropolymerization and carbon nanotube chemical doping. J Mater Chem A 2019;7:13687-94.
35. Ziati M, Bekkioui N, Ez-zahraouy H. Correlation between carrier mobility and effective mass in Sr2RuO4-xFx (x = 2) under uniaxial strain using the Yukawa screened PBE0 hybrid functional. J Phys Chem Solids 2022;161:110409.
36. Huang X, Deng L, Liu F, Liu Z, Chen G. Aggregate structure evolution induced by annealing and subsequent solvent post-treatment for thermoelectric property enhancement of PEDOT:PSS films. Chem Eng J 2021;417:129230.
37. Shante VKS, Varma CM, Bloch AN. Hopping conductivity in “one-dimensional” disordered compounds. Phys Rev B 1973;8:4885-9.
38. Zhou X, Liang A, Pan C, Wang L. Effects of oxidative doping on the thermoelectric performance of polyfluorene derivatives/carbon nanotube composite films. Org Electron 2018;52:281-7.
39. Wang S, Zhou Y, Liu Y, Wang L, Gao C. Enhanced thermoelectric properties of polyaniline/polypyrrole/carbon nanotube ternary composites by treatment with a secondary dopant using ferric chloride. J Mater Chem C 2020;8:528-35.
40. Deng L, Zhang Y, Wei S, Lv H, Chen G. Highly foldable and flexible films of PEDOT:PSS/Xuan paper composites for thermoelectric applications. J Mater Chem A 2021;9:8317-24.
41. Jia Y, Jiang Q, Sun H, et al. Wearable thermoelectric materials and devices for self-powered electronic systems. Adv Mater 2021;33:e2102990.
42. Li Q, Zhou Q, Wen L, Liu W. Enhanced thermoelectric performances of flexible PEDOT:PSS film by synergistically tuning the ordering structure and oxidation state. J Materiomics 2020;6:119-27.
43. Li Q, Deng M, Zhang S, et al. Synergistic enhancement of thermoelectric and mechanical performances of ionic liquid LiTFSI modulated PEDOT flexible films. J Mater Chem C 2019;7:4374-81.
44. Kee S, Kim H, Paleti SHK, et al. Highly stretchable and air-stable PEDOT:PSS/ionic liquid composites for efficient organic thermoelectrics. Chem Mater 2019;31:3519-26.