REFERENCES

1. Cinar ME, Ozturk T. Thienothiophenes, dithienothiophenes, and thienoacenes: syntheses, oligomers, polymers, and properties. Chem Rev 2015;115:3036-140.

2. Xue Z, Chen S, Gao N, et al. Structural design and applications of stereoregular fused thiophenes and their oligomers and polymers. Polymer Reviews 2020;60:318-58.

3. Vegiraju S, Luo X, Li L, et al. Solution processable pseudo n-thienoacenes via intramolecular S···S lock for high performance organic field effect transistors. Chem Mater 2020;32:1422-9.

4. Chen T, Peng K, Lin Y, et al. A chlorinated nonacyclic carbazole-based acceptor affords over 15% efficiency in organic solar cells. J Mater Chem A 2020;8:1131-7.

5. Strakova K, Assies L, Goujon A, Piazzolla F, Humeniuk HV, Matile S. Dithienothiophenes at work: access to mechanosensitive fluorescent probes, chalcogen-bonding catalysis, and beyond. Chem Rev 2019;119:10977-1005.

6. Huang Y, Huang W, Yang J, et al. The synthesis, characterization and flexible OFET application of three (Z)-1,2-bis(4-(tert-butyl)phenyl)ethane based copolymers. Polym Chem 2016;7:538-45.

7. Vegiraju S, He G, Kim C, et al. Solution-processable dithienothiophenoquinoid (DTTQ) structures for ambient-stable n-channel organic field effect transistors. Adv Funct Mater 2017;27:1606761.

8. Vegiraju S, Huang DY, Priyanka P, et al. High performance solution-processable tetrathienoacene (TTAR) based small molecules for organic field effect transistors (OFETs). Chem Commun (Camb) 2017;53:5898-901.

9. Gao W, Fu H, Li Y, et al. Asymmetric acceptors enabling organic solar cells to achieve an over 17% efficiency: conformation effects on regulating molecular properties and suppressing nonradiative energy loss. Adv Energy Mater 2021;11:2003177.

10. Chen P, Shi S, Wang H, et al. Aggregation strength tuning in difluorobenzoxadiazole-based polymeric semiconductors for high-performance thick-film polymer solar cells. ACS Appl Mater Interfaces 2018;10:21481-91.

11. Wang L, Zhuang Q, You G, et al. Donor-acceptor type polymers containing fused-ring units as dopant-free, hole-transporting materials for high-performance perovskite solar cells. ACS Appl Energy Mater 2020;3:12475-83.

12. Liu X, Kong F, Guo F, et al. Influence of π-linker on triphenylamine-based hole transporting materials in perovskite solar cells. Dyes and Pigments 2017;139:129-35.

13. Lu Z, Peng J, Wu A, et al. Heteroleptic ruthenium sensitizers with hydrophobic fused-thio­phenes for use in efficient dye-­sensitized solar cells. Eur J Inorg Chem 2016;2016:1214-24.

14. Isci R, Tekin E, Kaya K, Piravadili Mucur S, Gorkem SF, Ozturk T. Tetraphenylethylene substituted thienothiophene and dithienothiophene derivatives: synthesis, optical properties and OLED applications. J Mater Chem C 2020;8:7908-15.

15. Xue X, Luo J, Kong L, et al. The synthesis of triazine-thiophene-thiophene conjugated porous polymers and their composites with carbon as anode materials in lithium-ion batteries. RSC Adv 2021;11:10688-98.

16. Cheng J, Tan Z, Xing Y, et al. Exfoliated conjugated porous polymer nanosheets for highly efficient photocatalytic hydrogen evolution. J Mater Chem A 2021;9:5787-95.

17. Monk P, Mortimer R, Rosseinsky D. Electrochromism and electrochromic devices. Cambridge: Cambridge University Press; 2007. p. 512.

18. Beaujuge PM, Reynolds JR. Color control in pi-conjugated organic polymers for use in electrochromic devices. Chem Rev 2010;110:268-320.

19. Gunbas G, Toppare L. Electrochromic conjugated polyheterocycles and derivatives--highlights from the last decade towards realization of long lived aspirations. Chem Commun (Camb) 2012;48:1083-101.

20. Mortimer RJ, Rosseinsky DR, Monk PMS. Electrochromic materials and devices. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2015.

21. Lv X, Li W, Ouyang M, Zhang Y, Wright DS, Zhang C. Polymeric electrochromic materials with donor-acceptor structures. J Mater Chem C 2017;5:12-28.

22. Lin K, Chen S, Lu B, Xu J. Hybrid π-conjugated polymers from dibenzo pentacyclic centers: precursor design, electrosynthesis and electrochromics. Sci China Chem 2017;60:38-53.

23. Liu Y, Song J, Bo Z. Designing high performance conjugated materials for photovoltaic cells with the aid of intramolecular noncovalent interactions. Chem Commun (Camb) 2021;57:302-14.

24. Lu B, Jian N, Qu K, et al. Stepwise enhancement on optoelectronic performances of polyselenophene via electropolymerization of mono-, bi-, and tri-selenophene. Electrochimica Acta 2020;340:135974.

25. Chen W, Xue G. Low potential electrochemical syntheses of heteroaromatic conducting polymers in a novel solvent system based on trifluroborate-ethyl ether. Prog Polym Sci 2005;30:783-811.

26. Inzelt G, Pineri M, Schultze J, Vorotyntsev M. Electron and proton conducting polymers: recent developments and prospects. Electrochimica Acta 2000;45:2403-21.

27. Vorotyntsev M, Badiali J. Short-range electron-ion interaction effects in charging the electroactive polymer films. Electrochimica Acta 1994;39:289-306.

28. Lin K, Ming S, Zhen S, Zhao Y, Lu B, Xu J. Molecular design of DBT/DBF hybrid thiophenes π-conjugated systems and comparative study of their electropolymerization and optoelectronic properties: from comonomers to electrochromic polymers. Polym Chem 2015;6:4575-87.

29. Lin K, Li C, Tao W, et al. Electrochemical synthesis and electro-optical properties of dibenzothiophene/thiophene conjugated polymers with stepwise enhanced conjugation lengths. Front Chem 2020;8:819.

30. Ming S, Zhen S, Lin K, Zhao L, Xu J, Lu B. Thiadiazolo[3,4-c]pyridine as an acceptor toward fast-switching green donor-acceptor-type electrochromic polymer with low bandgap. ACS Appl Mater Interfaces 2015;7:11089-98.

31. Yao W, Liu P, Liu C, et al. Flexible conjugated polyfurans for bifunctional electrochromic energy storage application. Chem Eng J 2022;428:131125.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/