REFERENCES
1. Vázquez-González M, Willner I. Stimuli-responsive biomolecule-based hydrogels and their applications. Angew Chem Int Ed Engl 2020;59:15342-77.
3. Gong J, Katsuyama Y, Kurokawa T, Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv Mater 2003;15:1155-8.
4. Zhang Y, Li Y, Liu W. Dipole-dipole and H-bonding interactions significantly enhance the multifaceted mechanical properties of thermoresponsive shape memory hydrogels. Adv Funct Mater 2015;25:471-80.
5. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Delivery Rev 2001;53:321-39.
6. Chen Q, Chen H, Zhu L, Zheng J. Fundamentals of double network hydrogels. J Mater Chem B 2015;3:3654-76.
7. Balakrishnan B, Banerjee R. Biopolymer-based hydrogels for cartilage tissue engineering. Chem Rev 2011;111:4453-74.
8. Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater 2015;14:23-36.
9. Deng J, Yuk H, Wu J, et al. Electrical bioadhesive interface for bioelectronics. Nat Mater 2021;20:229-36.
10. Cao C, Hill TL, Li B, Chen G, Wang L, Gao X. Uncovering isolated resonant responses in antagonistic pure-shear dielectric elastomer actuators. Soft Sci 2021;1:1-19.
11. Li G, Deng Z, Cai M, et al. A stretchable and adhesive ionic conductor based on polyacrylic acid and deep eutectic solvents. npj Flex Electron 2021;5:23.
12. Wang W, Zhang Y, Liu W. Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog Polym Sci 2017;71:1-25.
13. Mati IK, Cockroft SL. Molecular balances for quantifying non-covalent interactions. Chem Soc Rev 2010;39:4195-205.
14. Green JJ, Elisseeff JH. Mimicking biological functionality with polymers for biomedical applications. Nature 2016;540:386-94.
15. Rosales AM, Anseth KS. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat Rev Mater 2016;1:15012.
16. Tang L, Liu W, Liu G. High-strength hydrogels with integrated functions of H-bonding and thermoresponsive surface-mediated reverse transfection and cell detachment. Adv Mater 2010;22:2652-6.
17. Wang X, Wang J, Yang Y, Yang F, Wu D. Fabrication of multi-stimuli responsive supramolecular hydrogels based on host–guest inclusion complexation of a tadpole-shaped cyclodextrin derivative with the azobenzene dimer. Polym Chem 2017;8:3901-9.
18. Zhang Y, Gao H, Wang H, et al. Radiopaque highly stiff and tough shape memory hydrogel microcoils for permanent embolization of arteries. Adv Funct Mater 2018;28:1705962.
19. Koetting MC, Peters JT, Steichen SD, Peppas NA. Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Rep 2015;93:1-49.
20. Li J, Suo Z, Vlassak JJ. Stiff, strong, and tough hydrogels with good chemical stability. J Mater Chem B 2014;2:6708-13.
21. Bai T, Zhang P, Han Y, et al. Construction of an ultrahigh strength hydrogel with excellent fatigue resistance based on strong dipole-dipole interaction. Soft Matter 2011;7:2825.
22. Lin P, Ma S, Wang X, Zhou F. Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv Mater 2015;27:2054-9.
25. O'Reilly FJ, Xue L, Graziadei A, et al. In-cell architecture of an actively transcribing-translating expressome. Science 2020;369:554-7.
27. Paolini L, Federici S, Consoli G, et al. Fourier-transform Infrared (FT-IR) spectroscopy fingerprints subpopulations of extracellular vesicles of different sizes and cellular origin. J Extracell Vesicles 2020;9:1741174.
28. De Francesco A, Scaccia L, Lennox RB, et al. Model-free description of polymer-coated gold nanoparticle dynamics in aqueous solutions obtained by Bayesian analysis of neutron spin echo data. Phys Rev E 2019;99:052504.
29. Li Y, Zhang C, Jia P, et al. Dielectric relaxation of interfacial polarizable molecules in chitosan ice-hydrogel materials. J Materiomices 2018;4:35-43.
30. Zhou H, Wang M, Jin X, et al. Capacitive pressure sensors containing reliefs on solution-processable hydrogel electrodes. ACS Appl Mater Interfaces 2021;13:1441-51.
31. Wang Y, Zeng F, Liu J, Wan Q, Guo D, Deng Y. Adaptive deformation of ionic domains in hydrogel enforcing dielectric coupling for sensitive response to mechanical stretching. Advanced Intelligent Systems 2020;2:2000016.
32. Cai Y, Yang D, Yin R, Gao Y, Zhang H, Zhang W. An enzyme-free capacitive glucose sensor based on dual-network glucose-responsive hydrogel and coplanar electrode. Analyst 2021;146:213-21.
33. Ishai PB, Talary MS, Caduff A, Levy E, Feldman Y. Electrode polarization in dielectric measurements: a review. Meas Sci Technol 2013;24:102001.
34. Bai T, Han Y, Zhang P, Wang W, Liu W. Zinc ion-triggered two-way macro-/microscopic shape changing and memory effects in high strength hydrogels with pre-programmed unilateral patterned surfaces. Soft Matter 2012;8:6846.
35. Malkin TL, Murray BJ, Brukhno AV, Anwar J, Salzmann CG. Structure of ice crystallized from supercooled water. Proc Natl Acad Sci U S A 2012;109:1041-5.
36. Gong Y, Du R, Mo G, Xing X, Lü C, Wu Z. In-situ microstructural changes of polyacrylonitrile based fibers with stretching deformation. Polymer 2014;55:4270-80.
38. Markel VA. Introduction to the Maxwell Garnett approximation: tutorial. J Opt Soc Am A Opt Image Sci Vis 2016;33:1244-56.
40. Popov I, Puzenko A, Khamzin A, Feldman Y. The dynamic crossover in dielectric relaxation behavior of ice I(h). Phys Chem Chem Phys 2015;17:1489-97.