REFERENCES
1. Zhang RZ, Wan CL, Wang YF, Koumoto K. Titanium sulphene: two-dimensional confinement of electrons and phonons giving rise to improved thermoelectric performance. Phys Chem Chem Phys 2012;14:15641-4.
2. Huang W, Luo X, Gan CK, Quek SY, Liang G. Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2. Phys Chem Chem Phys 2014;16:10866-74.
3. Hippalgaonkar K, Wang Y, Ye Y, et al. High thermoelectric power factor in two-dimensional crystals of $\mathrm{Mo}{\mathrm{S}}_{2}$. Physical Review B 2017;95:115407.
4. Wu J, Chen Y, Wu J, Hippalgaonkar K. Perspectives on thermoelectricity in layered and 2D materials. Advanced Electronic Materials 2018;4:1800248.
5. Kayyalha M, Maassen J, Lundstrom M, Shi L, Chen YP. Gate-tunable and thickness-dependent electronic and thermoelectric transport in few-layer MoS2. Journal of Applied Physics 2016;120:134305.
6. Pallecchi I, Manca N, Patil B, Pellegrino L, Marré D. Review on thermoelectric properties of transition metal dichalcogenides. Nano Futures 2020;4:032008.
7. Shimizu S, Shiogai J, Takemori N, et al. Giant thermoelectric power factor in ultrathin FeSe superconductor. Nat Commun 2019;10:825.
8. Cao YD, Sun YH, Shi SF, Wang RM. Anisotropy of two-dimensional ReS2 and advances in its device application. Rare Metals 2021.
9. Novak TG, Kim K, Jeon S. 2D and 3D nanostructuring strategies for thermoelectric materials. Nanoscale 2019;11:19684-99.
10. Huang H, Cui Y, Li Q, et al. Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting. Nano Energy 2016;26:172-9.
11. Li D, Gong Y, Chen Y, et al. Recent progress of two-dimensional thermoelectric materials. Nanomicro Lett 2020;12:36.
12. Hicks LD, Dresselhaus MS. Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B Condens Matter 1993;47:12727-31.
13. Ohta H, Kim S, Mune Y, et al. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat Mater 2007;6:129-34.
14. Sztein A, Bowers JE, DenBaars SP, Nakamura S. Polarization field engineering of GaN/AlN/AlGaN superlattices for enhanced thermoelectric properties. Applied Physics Letters 2014;104:5.
15. Zhang H, Rousuli A, Shen S, et al. Enhancement of superconductivity in organic-inorganic hybrid topological materials. Science Bulletin 2020;65:188-93.
16. Shi MZ, Wang NZ, Lei B, et al. FeSe-based superconductors with a superconducting transition temperature of 50 K. New Journal of Physics 2018;20:123007.
17. Harshman DR, Mills AP Jr. Concerning the nature of high-Tc superconductivity: Survey of experimental properties and implications for interlayer coupling. Phys Rev B Condens Matter 1992;45:10684-712.
18. Burrard-Lucas M, Free DG, Sedlmaier SJ, et al. Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer. Nat Mater 2013;12:15-9.
19. Takada K, Sakurai H, Takayama-Muromachi E, Izumi F, Dilanian RA, Sasaki T. Superconductivity in two-dimensional CoO2 layers. Nature 2003;422:53-5.
20. Qian X, Zhou J, Chen G. Phonon-engineered extreme thermal conductivity materials. Nat Mater 2021;20:1188-202.
21. Huang Y, Wan C: Controllable fabrication and multifunctional applications of graphene/ceramic composites. Journal of Advanced Ceramics 2020;9:271-91.
22. Xu X, Chen J, Zhou J, Li B. Thermal conductivity of polymers and their nanocomposites. Adv Mater 2018;30:e1705544.
23. Wan C, Gu X, Dang F, et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat Mater 2015;14:622-7.
24. Zawilski BM, Littleton RT, Tritt TM: Description of the parallel thermal conductance technique for the measurement of the thermal conductivity of small diameter samples. Review of Scientific Instruments 2001;72:1770-4.
25. Fang CM, de Groot RA, Haas C. Bulk and surface electronic structure of 1T-TiS2 and 1T-TiSe2. Physical Review B 1997; 56:4455-63.
26. Imai H, Shimakawa Y, Kubo Y. Large thermoelectric power factor in TiS2 crystal with nearly stoichiometric composition. Physical Review B 2001;64:241104.
27. Barry JJ, Hughes HP, Klipstein PC, Friend RH. Stoichiometry effects in angle-resolved photoemission and transport studies of TI1+XS2. Journal of Physics C-Solid State Physics 1983;16:393-402.
28. Wan C, Wang Y, Wang N, Norimatsu W, Kusunoki M, Koumoto K. Intercalation: building a natural superlattice for better thermoelectric performance in layered chalcogenides. Journal of Electronic Materials 2011;40:1271-80.
29. Cardona M, Christensen NE. Acoustic deformation potentials and heterostructure band offsets in semiconductors. Phys Rev B Condens Matter 1987;35:6182-94.
31. Ohta H, Mune Y, Koumoto K, Mizoguchi T, Ikuhara Y. Critical thickness for giant thermoelectric Seebeck coefficient of 2DEG confined in SrTiO3/SrTi0.8Nb0.2O3 superlattices. Thin Solid Films 2008;516:5916-20.
32. Kim H-S, Gibbs ZM, Tang Y, Wang H, Snyder GJ. Characterization of Lorenz number with Seebeck coefficient measurement. APL Materials 2015:3.