REFERENCES
1. Yang J, Liu Q, Deng Z, et al. Ionic liquid-activated wearable electronics. Materials Today Physics 2019;8:78-85.
3. Nozariasbmarz A, Collins H, Dsouza K, et al. Review of wearable thermoelectric energy harvesting: from body temperature to electronic systems. Applied Energy 2020;258:114069.
4. Zhang Y, Park SJ. Flexible organic thermoelectric materials and devices for wearable green energy harvesting. Polymers (Basel) 2019;11:909.
5. Wang Y, Yang L, Shi XL, et al. Flexible thermoelectric materials and generators: challenges and innovations. Adv Mater 2019;31:e1807916.
6. Jung YS, Jeong DH, Kang SB, et al. Wearable solar thermoelectric generator driven by unprecedentedly high temperature difference. Nano Energy 2017;40:663-72.
7. Chang C, Zhao L. Anharmoncity and low thermal conductivity in thermoelectrics. Materials Today Physics 2018;4:50-7.
8. Kang SD, Pöhls J, Aydemir U, et al. Enhanced stability and thermoelectric figure-of-merit in copper selenide by lithium doping. Materials Today Physics 2017;1:7-13.
9. Zhai R, Wu Y, Zhu T, Zhao X. Thermoelectric performance of p-type zone-melted Se-doped Bi0.5Sb1.5Te3 alloys. Rare Met 2018;37:308-15.
10. Guan M, Qiu P, Song Q, et al. Improved electrical transport properties and optimized thermoelectric figure of merit in lithium-doped copper sulfides. Rare Met 2018;37:282-9.
11. He R, Zhu H, Sun J, et al. Improved thermoelectric performance of n-type half-Heusler MCo1-xNixSb (M = Hf, Zr). Materials Today Physics 2017;1:24-30.
12. Ding Y, Qiu Y, Cai K, et al. High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator. Nat Commun 2019;10:841.
13. Liu R, Tan X, Liu Y, et al. BiCuSeO as state-of-the-art thermoelectric materials for energy conversion: from thin films to bulks. Rare Met 2018;37:259-73.
14. Wu Y, Li W, Faghaninia A, et al. Promising thermoelectric performance in van der Waals layered SnSe2. Materials Today Physics 2017;3:127-36.
15. Ma S, Li C, Wei P, et al. High-pressure synthesis and excellent thermoelectric performance of Ni/BiTeSe magnetic nanocomposites. J Mater Chem A 2020;8:4816-26.
16. Cecchi S, Dragoni D, Kriegner D, et al. Interplay between structural and thermoelectric properties in epitaxial Sb2+xTe3 alloys. Adv Funct Mater 2019;29:1805184.
17. Chen Y, Fan Z, Zhang Z, et al. Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem Rev 2018;118:6409-55.
18. Atwa M, Nakagawa T, Yonamine A, et al. Top-down approach using supercritical carbon dioxide ball milling for producing sub-10 nm Bi2Te3 grains. Appl Phys Express 2020;13:067002.
19. Ambrosi A, Sofer Z, Luxa J, Pumera M. Exfoliation of layered topological insulators Bi2Se3 and Bi2Te3 via electrochemistry. ACS Nano 2016;10:11442-8.
20. Zhao M, Huang Y, Peng Y, Huang Z, Ma Q, Zhang H. Two-dimensional metal-organic framework nanosheets: synthesis and applications. Chem Soc Rev 2018;47:6267-95.
21. Gui R, Jin H, Sun Y, Jiang X, Sun Z. Two-dimensional group-VA nanomaterials beyond black phosphorus: synthetic methods, properties, functional nanostructures and applications. J Mater Chem A 2019;7:25712-71.
22. Liu J, Wang H, Li X, et al. High performance visible photodetectors based on thin two-dimensional Bi2Te3 nanoplates. J Alloys Compd 2019;798:656-64.
23. Shang H, Ding F, Li G, et al. High performance co-sputtered Bi2Te3 thin films with preferred orientation induced by MgO substrates. J Alloys Compd 2017;726:532-7.
24. Shang H, Dun C, Deng Y, et al. Bi0.5Sb1.5Te3-based films for flexible thermoelectric devices. J Mater Chem A 2020;8:4552-61.
25. Yoo T, Lee E, Dong S, et al. Thermal conductivity of Bi2 (SexTe1-x)3 alloy films grown by molecular beam epitaxy. APL Materials 2017;5:066101.
26. Wudil Y, Gondal M, Rao S, Kunwar S. Thermal conductivity of PLD-grown thermoelectric Bi2Te2.7Se0.3 films using temperature-dependent Raman spectroscopy technique. Ceramics International 2020;46:7253-8.
27. Liu W, Jie Q, Kim HS, Ren Z. Current progress and future challenges in thermoelectric power generation: from materials to devices. Acta Materialia 2015;87:357-76.
28. Masood KB, Farooq U, Singh J. Evolution of the structural, dielectric and electrical transport properties of Bi2Te3 nano-sticks synthesized via polyol and solvothermal routes. Physica B Condensed Matter 2020;588:412183.
29. Dun C, Hewitt CA, Huang H, et al. Layered Bi2Se3 nanoplate/polyvinylidene fluoride composite based n-type thermoelectric fabrics. ACS Appl Mater Interfaces 2015;7:7054-9.
30. Chen X, Feng L, Yu P, et al. Flexible thermoelectric films based on Bi2Te3 nanosheets and carbon nanotube network with high n-type performance. ACS Appl Mater Interfaces 2021;13:5451-9.
31. Li S, Liu Y, Liu F, et al. Effective atomic interface engineering in Bi2Te2.7Se0.3 thermoelectric material by atomic-layer-deposition approach. Nano Energy 2018;49:257-66.
32. Kong D, Cha JJ, Lai K, et al. Rapid surface oxidation as a source of surface degradation factor for Bi2Se3. ACS Nano 2011;5:4698-703.
33. Zhang L, Yang H, Yu J, et al. Controlled synthesis and photocatalytic activity of ZnSe nanostructured assemblies with different morphologies and crystalline phases. J Phys Chem C 2009;113:5434-43.
34. Zhou B, Zhu JJ. Microwave-assisted synthesis of Sb2Se3 submicron rods, compared with those of Bi2Te3 and Sb2Te3. Nanotechnology 2009;20:085604.
35. Liu S, Peng N, Bai Y, Ma D, Ma F, Xu K. Fabrication of Cu-Doped Bi2Te3 nanoplates and their thermoelectric properties. Journal of Elec Materi 2017;46:2697-704.