REFERENCES

1. Minárik P, Koscova E. Essential phospholipids in fatty liver diseases. Evid Self Med. 2021;1:210346.

2. Sánchez V, Baumann A, Brandt A, Wodak MF, Staltner R, Bergheim I. Oral supplementation of phosphatidylcholine attenuates the onset of a diet-induced metabolic dysfunction-associated steatohepatitis in female C57BL/6J mice. Cell Mol Gastroenterol Hepatol. 2024;17:785-800.

3. Huang L, Gao L, Chen C. Role of medium-chain fatty acids in healthy metabolism: a clinical perspective. Trends Endocrinol Metab. 2021;32:351-66.

4. Fuchs CD, Trauner M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol. 2022;19:432-50.

5. Trauner M, Fuchs CD. Novel therapeutic targets for cholestatic and fatty liver disease. Gut. 2022;71:194-209.

6. Lionarons DA, Heger M, van Golen RF, et al. Simple steatosis sensitizes cholestatic rats to liver injury and dysregulates bile salt synthesis and transport. Sci Rep. 2016;6:31829.

7. Apodaka-Biguri M, Simão AL, González-Romero F, et al. E2F2 transcription factor promotes a cholestatic MASH phenotype by regulating hepatobiliary metabolism through miR-34a-5p. Hepatology. 2025.

8. Zhou W, Anakk S. Melancholé: the dark side of bile acids and its cellular consequences. Cell Mol Gastroenterol Hepatol. 2022;13:1474-6.

9. Xie AJ, Mai CT, Zhu YZ, Liu XC, Xie Y. Bile acids as regulatory molecules and potential targets in metabolic diseases. Life Sci. 2021;287:120152.

10. Lichtenberger LM. The hydrophobic barrier properties of gastrointestinal mucus. Annu Rev Physiol. 1995;57:565-83.

11. Stremmel W, Lukasova M, Weiskirchen R. The neglected biliary mucus and its phosphatidylcholine content: a putative player in pathogenesis of primary cholangitis-a narrative review article. Ann Transl Med. 2021;9:738.

12. Vandenhaute B, Buisine MP, Debailleul V, et al. Mucin gene expression in biliary epithelial cells. J Hepatol. 1997;27:1057-66.

13. Stremmel W, Staffer S, Weiskirchen R. Phosphatidylcholine passes by paracellular transport to the apical side of the polarized biliary tumor cell line Mz-ChA-1. Int J Mol Sci. 2019;20:4034.

14. Stremmel W, Braun A, Hanemann A, Ehehalt R, Autschbach F, Karner M. Delayed release phosphatidylcholine in chronic-active ulcerative colitis: a randomized, double-blinded, dose finding study. J Clin Gastroenterol. 2010;44:e101-7.

15. Lukasova M, Weinberger K, Weiskirchen R, Stremmel W. Onion-skin type of periductular sclerosis in mice with genetic deletion of biliary kindlin-2 as tight junction stabilizer: a pilot experiment indicating a primary sclerosing cholangitis (PSC) phenotype. Metab Target Organ Damage. 2024;4:36.

16. Merlen G, Tordjmann T. Tight junction proteins and biliary diseases. Curr Opin Gastroenterol. 2024;40:70-6.

17. Roehlen N, Roca Suarez AA, El Saghire H, et al. Tight junction proteins and the biology of hepatobiliary disease. Int J Mol Sci. 2020;21:825.

18. Beuers U, Kullak-Ublick GA, Pusl T, Rauws ER, Rust C. Medical treatment of primary sclerosing cholangitis: a role for novel bile acids and other (post-)transcriptional modulators? Clin Rev Allergy Immunol. 2009;36:52-61.

19. Fickert P, Hirschfield GM, Denk G, et al.; European PSC norUDCA Study Group. norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis. J Hepatol. 2017;67:549-58.

20. Benedetti A, Alvaro D, Bassotti C, et al. Cytotoxicity of bile salts against biliary epithelium: a study in isolated bile ductule fragments and isolated perfused rat liver. Hepatology. 1997;26:9-21.

21. Long JZ, Cisar JS, Milliken D, et al. Metabolomics annotates ABHD3 as a physiologic regulator of medium-chain phospholipids. Nat Chem Biol. 2011;7:763-5.

22. Kawaguchi E, Shimokawa K, Ishii F. Physicochemical properties of structured phosphatidylcholine in drug carrier lipid emulsions for drug delivery systems. Colloids Surf B Biointerfaces. 2008;62:130-5.

23. Korbecki J, Bosiacki M, Kupnicka P, et al. Biochemistry and diseases related to the interconversion of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. Int J Mol Sci. 2024;25:10745.

24. Roy P, Tomassoni D, Nittari G, Traini E, Amenta F. Effects of choline containing phospholipids on the neurovascular unit: a review. Front Cell Neurosci. 2022;16:988759.

25. Kenny TC, Scharenberg S, Abu-Remaileh M, Birsoy K. Cellular and organismal function of choline metabolism. Nat Metab. 2025;7:35-52.

26. Maev IV, Samsonov AA, Palgova LK, et al. Effectiveness of phosphatidylcholine in alleviating steatosis in patients with non-alcoholic fatty liver disease and cardiometabolic comorbidities (MANPOWER study). BMJ Open Gastroenterol. 2020;7:e000341.

27. WebMD. Phosphatidylcholine - uses, side effects, and more. Available from: https://www.webmd.com/vitamins/ai/ingredientmono-501/phosphatidylcholine#overview. (Last accessed on 15 Dec 2025).

28. Luukkonen PK, Dufour S, Lyu K, et al. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A. 2020;117:7347-54.

29. Mumme K, Stonehouse W. Effects of medium-chain triglycerides on weight loss and body composition: a meta-analysis of randomized controlled trials. J Acad Nutr Diet. 2015;115:249-63.

30. Bueno NB, de Melo IV, Florêncio TT, Sawaya AL. Dietary medium-chain triacylglycerols versus long-chain triacylglycerols for body composition in adults: systematic review and meta-analysis of randomized controlled trials. J Am Coll Nutr. 2015;34:175-83.

31. Shcherbakova K, Schwarz A, Apryatin S, Karpenko M, Trofimov A. Supplementation of regular diet with medium-chain triglycerides for procognitive effects: a narrative review. Front Nutr. 2022;9:934497.

Metabolism and Target Organ Damage
ISSN 2769-6375 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/