REFERENCES
1. Xiang S, Wang Y, Lei D, et al. Donor graft METTL3 gene transfer ameliorates rat liver transplantation ischemia-reperfusion injury by enhancing HO-1 expression in an m6A-dependent manner. Clin Immunol. 2023;251:109325.
2. Lonardo A, Singal AK, Osna N, Kharbanda KK. Effect of cofactors on NAFLD/NASH and MAFLD. A paradigm illustrating the pathomechanics of organ dysfunction. Metab Target Organ Damage. 2022;2:12.
3. Huang Z, Mou T, Luo Y, et al. Inhibition of miR-450b-5p ameliorates hepatic ischemia/reperfusion injury via targeting CRYAB. Cell Death Dis. 2020;11:455.
4. Yue P, Lv X, Cao H, et al. Hypothermic oxygenated perfusion inhibits CLIP1-mediated TIRAP ubiquitination via TFPI2 to reduce ischemia‒reperfusion injury of the fatty liver. Exp Mol Med. 2024;56:2588-601.
5. Liu R, Cao H, Zhang S, et al. ZBP1-mediated apoptosis and inflammation exacerbate steatotic liver ischemia/reperfusion injury. J Clin Invest. 2024;134:e180451.
6. Álvarez-Mercado AI, Negrete-Sánchez E, Gulfo J, et al. EGF-GH axis in rat steatotic and non-steatotic liver transplantation from brain-dead donors. Transplantation. 2019;103:1349-59.
7. Trapero-Marugán M, Little EC, Berenguer M. Stretching the boundaries for liver transplant in the 21st century. Lancet Gastroenterol Hepatol. 2018;3:803-11.
8. Jackson KR, Motter JD, Haugen CE, et al. Minimizing risks of liver transplantation with steatotic donor livers by preferred recipient matching. Transplantation. 2020;104:1604-11.
9. Sveinbjornsson G, Ulfarsson MO, Thorolfsdottir RB, et al; DBDS Genomic consortium. Multiomics study of nonalcoholic fatty liver disease. Nat Genet. 2022;54:1652-63.
10. Zhang L, Dai X, Wang L, et al. Iron overload accelerated lipid metabolism disorder and liver injury in rats with non-alcoholic fatty liver disease. Front Nutr. 2022;9:961892.
11. Chu KKW, Chan SC, Sin SL, et al. Lipid profiles of donors and recipients of liver transplant: like father like son. Hepatol Int. 2017;11:300-5.
12. Lee JY, Kim KM, Lee SG, et al. Prevalence and risk factors of non-alcoholic fatty liver disease in potential living liver donors in Korea: a review of 589 consecutive liver biopsies in a single center. J Hepatol. 2007;47:239-44.
13. Wentworth BJ. Metabolic dysfunction-associated steatotic liver disease throughout the liver transplant cycle: a comprehensive review. Metab Target Organ Damage. 2024;4:51.
14. Shendge AK, Sekler I, Hershfinkel M. ZnR/GPR39 regulates hepatic insulin signaling, tunes liver bioenergetics and ROS production, and mitigates liver fibrosis and injury. Redox Biol. 2024;78:103403.
15. Wang P, Zhang SY, Dong Y, et al. Adipose ADM2 ameliorates NAFLD via promotion of ceramide catabolism. Acta Pharm Sin B. 2024;14:4883-98.
16. Lu X, Xie Q, Pan X, et al. Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal Transduct Target Ther. 2024;9:262.
17. Ke B, Kupiec-Weglinski JW. Lipid metabolites: the alarm signal to trigger liver ischemia-reperfusion injury. Transplantation. 2018;102:887-9.
18. Dudek M, Pfister D, Donakonda S, et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature. 2021;592:444-9.
19. Huang HT, Zhang XY, Zhang C, Ling Q, Zheng SS. Predicting dyslipidemia after liver transplantation: a significant role of recipient metabolic inflammation profile. World J Gastroenterol. 2020;26:2374-87.
20. Wang H, Wang ZL, Zhang S, et al. Metronomic capecitabine inhibits liver transplant rejection in rats by triggering recipients’ T cell ferroptosis. World J Gastroenterol. 2023;29:3084-102.
21. Chavin KD, Fiorini RN, Shafizadeh S, et al. Fatty acid synthase blockade protects steatotic livers from warm ischemia reperfusion injury and transplantation. Am J Transplant. 2004;4:1440-7.
22. Llacuna L, Fernández A, Montfort CV, et al. Targeting cholesterol at different levels in the mevalonate pathway protects fatty liver against ischemia-reperfusion injury. J Hepatol. 2011;54:1002-10.
23. Jin G, Guo N, Liu Y, et al. 5-aminolevulinate and CHIL3/CHI3L1 treatment amid ischemia aids liver metabolism and reduces ischemia-reperfusion injury. Theranostics. 2023;13:4802-20.
24. Farooqui AA, Farooqui T. Phospholipids, sphingolipids, and cholesterol-derived lipid mediators and their role in neurological disorders. Int J Mol Sci. 2024;25:10672.
25. Liu J, Luo R, Zhang Y, Li X. Current status and perspective on molecular targets and therapeutic intervention strategy in hepatic ischemia-reperfusion injury. Clin Mol Hepatol. 2024;30:585-619.
26. Hossain MA, Wakabayashi H, Izuishi K, Okano K, Yachida S, Maeta H. The role of prostaglandins in liver ischemia-reperfusion injury. Curr Pharm Des. 2006;12:2935-51.
27. Cao Z, Mulvihill MM, Mukhopadhyay P, et al. Monoacylglycerol lipase controls endocannabinoid and eicosanoid signaling and hepatic injury in mice. Gastroenterology. 2013;144:808-17.e15.
28. Alvarez ML, Lorenzetti F. Role of eicosanoids in liver repair, regeneration and cancer. Biochem Pharmacol. 2021;192:114732.
29. El-Badry AM, Jang JH, Elsherbiny A, et al. Chemical composition of hepatic lipids mediates reperfusion injury of the macrosteatotic mouse liver through thromboxane A(2). J Hepatol. 2011;55:1291-9.
30. Wang X, Mao W, Fang C, et al. Dusp14 protects against hepatic ischaemia-reperfusion injury via Tak1 suppression. J Hepatol. 2017;68:118-29.
31. Qin JJ, Mao W, Wang X, et al. Caspase recruitment domain 6 protects against hepatic ischemia/reperfusion injury by suppressing ASK1. J Hepatol. 2018;69:1110-22.
32. Klomp JA, Klomp JE, Stalnecker CA, et al. Defining the KRAS- and ERK-dependent transcriptome in KRAS-mutant cancers. Science. 2024;384:eadk0775.
33. Murase Y, Yokogawa R, Yabuta Y, et al. In vitro reconstitution of epigenetic reprogramming in the human germ line. Nature. 2024;631:170-8.
34. Bhattacharyya S, Tobacman JK. SARS-CoV-2 spike protein-ACE2 interaction increases carbohydrate sulfotransferases and reduces N-acetylgalactosamine-4-sulfatase by p38 MAPK. Signal Transduct Target Ther. 2024;9:39.
35. Wu H, Xu X, Li J, Gong J, Li M. TIM-4 blockade of KCs combined with exogenous TGF-β injection helps to reverse acute rejection and prolong the survival rate of mice receiving liver allografts. Int J Mol Med. 2018;42:346-58.
36. Wu L, Cao H, Tian X, et al. Bone marrow mesenchymal stem cells modified with heme oxygenase-1 alleviate rejection of donation after circulatory death liver transplantation by inhibiting dendritic cell maturation in rats. Int Immunopharmacol. 2022;107:108643.
37. Nomura DK, Morrison BE, Blankman JL, et al. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science. 2011;334:809-13.
38. Li B, Han X, Ye X, et al. Substance P-regulated leukotriene B4 production promotes acute pancreatitis-associated lung injury through neutrophil reverse migration. Int Immunopharmacol. 2018;57:147-56.
39. Theruvath TP, Czerny C, Ramshesh VK, Zhong Z, Chavin KD, Lemasters JJ. C-Jun N-terminal kinase 2 promotes graft injury via the mitochondrial permeability transition after mouse liver transplantation. Am J Transplant. 2008;8:1819-28.
40. Yu J, Hui AY, Chu ES, et al. Expression of a cyclo-oxygenase-2 transgene in murine liver causes hepatitis. Gut. 2007;56:991-9.
41. Kim M, Lee HW, Yoon CJ, et al. Intra-arterial lipo-prostaglandin E1 infusion for arterial spasm in liver transplantation: a case report. World J Clin Cases. 2023;11:8153-7.
42. Ajamieh H, Farrell GC, McCuskey RS, et al. Acute atorvastatin is hepatoprotective against ischaemia-reperfusion injury in mice by modulating eNOS and microparticle formation. Liver Int. 2015;35:2174-86.
43. Jaeschke H, Lemasters JJ. Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology. 2003;125:1246-57.
44. Houben P, Bormann E, Kneifel F, et al. How old is old? An age-stratified analysis of elderly liver donors above 65. J Clin Med. 2022;11:3899.
45. Qu X, Xu D, Yang T, et al. Macrophage Dvl2 deficiency promotes NOD1-driven pyroptosis and exacerbates inflammatory liver injury. Redox Biol. 2025;79:103455.
46. Li R, Yan X, Xiao C, et al. FTO deficiency in older livers exacerbates ferroptosis during ischaemia/reperfusion injury by upregulating ACSL4 and TFRC. Nat Commun. 2024;15:4760.
47. Fan G, Li Y, Chen J, Zong Y, Yang X. DHA/AA alleviates LPS-induced Kupffer cells pyroptosis via GPR120 interaction with NLRP3 to inhibit inflammasome complexes assembly. Cell Death Dis. 2021;12:73.
48. Jia D, Wu K, Luo J, et al. Wogonin alleviates DCD liver ischemia/reperfusion injury by regulating ALOX15/iNOS-mediated ferroptosis. Transplantation. 2024;108:2374-85.
49. Yu Y, Jiang L, Wang H, et al. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis. Blood. 2020;136:726-39.
50. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060-72.
51. Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16:1180-91.
52. Kono H, Rusyn I, Yin M, et al. NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease. J Clin Invest. 2000;106:867-72.
53. Kadono K, Kageyama S, Nakamura K, et al. Myeloid Ikaros-SIRT1 signaling axis regulates hepatic inflammation and pyroptosis in ischemia-stressed mouse and human liver. J Hepatol. 2022;76:896-909.
54. Liu H, Yeung WHO, Pang L, et al. Arachidonic acid activates NLRP3 inflammasome in MDSCs via FATP2 to promote post-transplant tumour recurrence in steatotic liver grafts. JHEP Rep. 2023;5:100895.
55. Gaul S, Leszczynska A, Alegre F, et al. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. J Hepatol. 2021;74:156-67.
56. Liu H, Man K. New insights in mechanisms and therapeutics for short- and long-term impacts of hepatic ischemia reperfusion injury post liver transplantation. Int J Mol Sci. 2021;22:8210.
57. Nilles KM, Krupp J, Lapin B, Sustento-Reodica N, Gallon L, Levitsky J. Incidence and impact of rejection following simultaneous liver-kidney transplantation. J Hepatol. 2015;62:340-5.
58. Lee BT, Fiel MI, Schiano TD. Antibody-mediated rejection of the liver allograft: an update and a clinico-pathological perspective. J Hepatol. 2021;75:1203-16.
59. Hirao H, Nakamura K, Kupiec-Weglinski JW. Liver ischaemia-reperfusion injury: a new understanding of the role of innate immunity. Nat Rev Gastroenterol Hepatol. 2022;19:239-56.
60. Meng X, Chen X, Wu L, Zheng S. The hyperlipidemia caused by overuse of glucocorticoid after liver transplantation and the immune adjustment strategy. J Immunol Res. 2017;2017:3149426.
61. McAlister VC, Peltekian KM, Malatjalian DA, et al. Orthotopic liver transplantation using low-dose tacrolimus and sirolimus. Liver Transpl. 2001;7:701-8.
62. Dueland S, Guren TK, Boberg KM, et al. Acute liver graft rejection after ipilimumab therapy. Ann Oncol. 2017;28:2619-20.
63. Robertson H, Kim HJ, Li J, et al. Decoding the hallmarks of allograft dysfunction with a comprehensive pan-organ transcriptomic atlas. Nat Med. 2024;30:3748-57.
64. Zhang Y, Shen S, Zhao G, et al.
65. Podder H, Kahan BD. Janus kinase 3: a novel target for selective transplant immunosupression. Expert Opin Ther Targets. 2004;8:613-29.
66. Schmauch E, Piening B, Mohebnasab M, et al. Integrative multi-omics profiling in human decedents receiving pig heart xenografts. Nat Med. 2024;30:1448-60.
67. Bolin P Jr, Shihab FS, Mulloy L, et al; OPTIMA Study Group. Optimizing tacrolimus therapy in the maintenance of renal allografts: 12-month results. Transplantation. 2008;86:88-95.
68. Grenda R, Watson A, Trompeter R, et al. A randomized trial to assess the impact of early steroid withdrawal on growth in pediatric renal transplantation: the TWIST study. Am J Transplant. 2010;10:828-36.
69. Li HY, Li B, Wei YG, et al. Higher tacrolimus blood concentration is related to hyperlipidemia in living donor liver transplantation recipients. Dig Dis Sci. 2012;57:204-9.
70. Zhong Z, Lemasters JJ. Role of free radicals in failure of fatty liver grafts caused by ethanol. Alcohol. 2004;34:49-58.
71. Khan MS, Kim JS, Hwang J, et al. Effective delivery of mycophenolic acid by oxygen nanobubbles for modulating immunosuppression. Theranostics. 2020;10:3892-904.
72. Kung VL, Sandhu R, Haas M, Huang E. Chronic active T cell-mediated rejection is variably responsive to immunosuppressive therapy. Kidney Int. 2021;100:391-400.
73. Lucey MR, Abdelmalek MF, Gagliardi R, et al. A comparison of tacrolimus and cyclosporine in liver transplantation: effects on renal function and cardiovascular risk status. Am J Transplant. 2005;5:1111-9.
74. Chen LJ, Xin Y, Yuan MX, Ji CY, Peng YM, Yin Q. CircFOXN2 alleviates glucocorticoid- and tacrolimus-induced dyslipidemia by reducing FASN mRNA stability by binding to PTBP1 during liver transplantation. Am J Physiol Cell Physiol. 2023;325:C796-806.
75. Alvares-da-Silva MR, de Oliveira CP, Stefano JT, et al. Pro-atherosclerotic markers and cardiovascular risk factors one year after liver transplantation. World J Gastroenterol. 2014;20:8667-73.
76. Zhang G, Wu K, Jiang X, et al. The role of ferroptosis-related non-coding RNA in liver fibrosis. Front Cell Dev Biol. 2024;12:1517401.
77. Tanimine N, Markmann JF, Wood-Trageser MA, et al. Donor-specific immune senescence as a candidate biomarker of operational tolerance following liver transplantation in adults: results of a prospective, multicenter cohort study. Am J Transplant. 2025;25:1030-44.
78. He P, Li J, Wang C, et al. Incidence and risk factors of de novo hepatitis E virus infection after receiving liver transplantation. J Med Virol. 2024;96:e29939.
79. Todeschini L, Cristin L, Martinino A, Mattia A, Agnes S, Giovinazzo F. The role of mTOR inhibitors after liver transplantation for hepatocellular carcinoma. Curr Oncol. 2023;30:5574-92.
80. Wissing KM, Pipeleers L. Obesity, metabolic syndrome and diabetes mellitus after renal transplantation: prevention and treatment. Transplant Rev. 2014;28:37-46.
81. Koh HH, Lee M, Kang M, et al. Association between low fasting glucose of the living donor and risk of graft loss in the recipient after liver transplantation. Sci Rep. 2025;15:951.
82. Li T, Song Y, Wei L, Song X, Duan R. Disulfidptosis: a novel cell death modality induced by actin cytoskeleton collapse and a promising target for cancer therapeutics. Cell Commun Signal. 2024;22:491.
83. Zheng Z, Song Y. Integrated analysis of disulfidptosis-related genes SLC7A11, SLC3A2, RPN1 and NCKAP1 across cancers. Discov Oncol. 2024;15:724.
84. Ciociola E, Dutta T, Sasidharan K, et al. Downregulation of the MARC1 p.A165 risk allele reduces hepatocyte lipid content by increasing beta-oxidation. Clin Mol Hepatol. 2025;31:445-59.
85. Kulozik P, Jones A, Mattijssen F, et al. Hepatic deficiency in transcriptional cofactor TBL1 promotes liver steatosis and hypertriglyceridemia. Cell Metab. 2011;13:389-400.
86. Claus TH, Lowe DB, Liang Y, et al. Specific inhibition of hormone-sensitive lipase improves lipid profile while reducing plasma glucose. J Pharmacol Exp Ther. 2005;315:1396-402.
87. Schweiger M, Romauch M, Schreiber R, et al. Pharmacological inhibition of adipose triglyceride lipase corrects high-fat diet-induced insulin resistance and hepatosteatosis in mice. Nat Commun. 2017;8:14859.
88. Parés A, Herrera M, Avilés J, Sanz M, Mas A. Treatment of resistant pruritus from cholestasis with albumin dialysis: combined analysis of patients from three centers. J Hepatol. 2010;53:307-12.
89. Palmer SC, Navaneethan SD, Craig JC, et al. HMG CoA reductase inhibitors (statins) for kidney transplant recipients. Cochrane Database Syst Rev. 2014;2014:CD005019.
90. Diem HV, Sokal EM, Janssen M, Otte JB, Reding R. Steroid withdrawal after pediatric liver transplantation: a long-term follow-up study in 109 recipients. Transplantation. 2003;75:1664-70.
91. Bosch J, Forns X. Therapy. Statins and liver disease: from concern to ‘wonder’ drugs? Nat Rev Gastroenterol Hepatol. 2015;12:320-1.
92. Zhang C, Chen K, Wei R, et al. The circFASN/miR-33a pathway participates in tacrolimus-induced dysregulation of hepatic triglyceride homeostasis. Signal Transduct Target Ther. 2020;5:23.
93. Beaven SW, Wroblewski K, Wang J, et al. Liver X receptor signaling is a determinant of stellate cell activation and susceptibility to fibrotic liver disease. Gastroenterology. 2011;140:1052-62.
94. Xiong Y, Yao H, Cheng Y, Gong D, Liao X, Wang R. Effects of monoacylglycerol lipase inhibitor URB602 on lung ischemia-reperfusion injury in mice. Biochem Biophys Res Commun. 2018;506:578-84.
95. Niu X, Zhang Y, Lai Z, et al. Lipolysis inhibition improves the survival of fat grafts through ameliorating lipotoxicity and inflammation. FASEB J. 2024;38:e23520.
96. Bottermann K, Granade ME, Oenarto V, Fischer JW, Harris TE. Atglistatin pretreatment preserves remote myocardium function following myocardial infarction. J Cardiovasc Pharmacol Ther. 2021;26:289-97.
97. Schleicher J, Dahmen U. Computational modeling of oxidative stress in fatty livers elucidates the underlying mechanism of the increased susceptibility to ischemia/reperfusion injury. Comput Struct Biotechnol J. 2018;16:511-22.
98. Tang SP, Mao XL, Chen YH, Yan LL, Ye LP, Li SW. Reactive oxygen species induce fatty liver and ischemia-reperfusion injury by promoting inflammation and cell death. Front Immunol. 2022;13:870239.
99. Kulik U, Moesta C, Spanel R, Borlak J. Dysfunctional Cori and Krebs cycle and inhibition of lactate transporters constitute a mechanism of primary nonfunction of fatty liver allografts. Transl Res. 2024;264:33-65.
100. Wu D, Xu J, Zhang Y, et al. tBHQ mitigates fatty liver ischemia-reperfusion injury by activating Nrf2 to attenuate hepatocyte mitochondrial damage and macrophage STING activation. Int Immunopharmacol. 2024;138:112515.
101. Balah A, Ezzat O, Akool ES. Vitamin E inhibits cyclosporin A-induced CTGF and TIMP-1 expression by repressing ROS-mediated activation of TGF-β/Smad signaling pathway in rat liver. Int Immunopharmacol. 2018;65:493-502.
102. Croce AC, Ferrigno A, Bertone V, et al. Fatty liver oxidative events monitored by autofluorescence optical diagnosis: comparison between subnormothermic machine perfusion and conventional cold storage preservation. Hepatol Res. 2017;47:668-82.
103. Jiao X, Li Y, Chen Z, et al. Targeting the PDE3B-cAMP-autophagy axis prevents liver injury in long-term supercooling liver preservation. Sci Transl Med. 2024;16:eadk0636.
104. Giwa S, Lewis JK, Alvarez L, et al. The promise of organ and tissue preservation to transform medicine. Nat Biotechnol. 2017;35:530-42.
105. Lee J, Park JS, Roh YS. Molecular insights into the role of mitochondria in non-alcoholic fatty liver disease. Arch Pharm Res. 2019;42:935-46.
106. Ma C, Kesarwala AH, Eggert T, et al. NAFLD causes selective CD4+ T lymphocyte loss and promotes hepatocarcinogenesis. Nature. 2016;531:253-7.
107. Nakagawa K, Tanaka N, Morita M, et al. PPARα is down-regulated following liver transplantation in mice. J Hepatol. 2012;56:586-94.
108. Pierantonelli I, Svegliati-Baroni G. Nonalcoholic fatty liver disease: basic pathogenetic mechanisms in the progression from NAFLD to NASH. Transplantation. 2019;103:e1-13.
109. Meng D, Chang M, Dai X, Kuang Q, Wang G. GTPBP8 mitigates nonalcoholic steatohepatitis (NASH) by depressing hepatic oxidative stress and mitochondrial dysfunction via PGC-1α signaling. Free Radic Biol Med. 2025;229:312-32.
110. Nativ NI, Yarmush G, So A, et al. Elevated sensitivity of macrosteatotic hepatocytes to hypoxia/reoxygenation stress is reversed by a novel defatting protocol. Liver Transpl. 2014;20:1000-11.
111. Freitas
112. Zaouali MA, Panisello A, Lopez A, et al. GSK3β and VDAC involvement in ER stress and apoptosis modulation during orthotopic liver transplantation. Int J Mol Sci. 2017;18:591.
113. Hassan L, Bueno P, Ferrón-Celma I, et al. Time course of antioxidant enzyme activities in liver transplant recipients. Transplant Proc. 2005;37:3932-5.
114. Bardallo RG, Company-Marin I, Folch-Puy E, Roselló-Catafau J, Panisello-Rosello A, Carbonell T. PEG35 and glutathione improve mitochondrial function and reduce oxidative stress in cold fatty liver graft preservation. Antioxidants. 2022;11:158.
115. Bardallo RG, Chullo G, Alva N, et al. Mitigating cold ischemic injury: HTK, UW and IGL-2 solution’s role in enhancing antioxidant defence and reducing inflammation in steatotic livers. Int J Mol Sci. 2024;25:9318.
116. Li R, Li J, Huang Y, et al. Polydatin attenuates diet-induced nonalcoholic steatohepatitis and fibrosis in mice. Int J Biol Sci. 2018;14:1411-25.
117. Yang T, Qu X, Wang X, et al. The macrophage STING-YAP axis controls hepatic steatosis by promoting the autophagic degradation of lipid droplets. Hepatology. 2024;80:1169-83.
118. Saaoud F, Wang J, Iwanowycz S, et al. Bone marrow deficiency of mRNA decaying protein Tristetraprolin increases inflammation and mitochondrial ROS but reduces hepatic lipoprotein production in LDLR knockout mice. Redox Biol. 2020;37:101609.
119. Kimak E, Hałabiś M, Baranowicz-Gąszczyk I, Solski J, Książek A. Association between moderately oxidized low-density lipoprotein and high-density lipoprotein particle subclass distribution in hemodialyzed and post-renal transplant patients. J Zhejiang Univ Sci B. 2011;12:365-71.
120. Jiang Y, Chen L, Wang H, Narisi B, Chen B. Li-Gan-Shi-Liu-Ba-Wei-San improves non-alcoholic fatty liver disease through enhancing lipid oxidation and alleviating oxidation stress. J Ethnopharmacol. 2015;176:499-507.
121. Chen H, Tan H, Wan J, et al. PPAR-γ signaling in nonalcoholic fatty liver disease: pathogenesis and therapeutic targets. Pharmacol Ther. 2023;245:108391.
122. Zhang J, Zhang SD, Wang P, et al. Pinolenic acid ameliorates oleic acid-induced lipogenesis and oxidative stress via AMPK/SIRT1 signaling pathway in HepG2 cells. Eur J Pharmacol. 2019;861:172618.
123. Mansouri A, Gattolliat CH, Asselah T. Mitochondrial dysfunction and signaling in chronic liver diseases. Gastroenterology. 2018;155:629-47.
124. Park MW, Cha HW, Kim J, et al. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol. 2021;41:101947.
125. Dong J, Li M, Peng R, Zhang Y, Qiao Z, Sun N. ACACA reduces lipid accumulation through dual regulation of lipid metabolism and mitochondrial function via AMPK- PPARα- CPT1A axis. J Transl Med. 2024;22:196.
126. Niki E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med. 2014;66:3-12.
127. Zhitkovich A.
128. Campanari DD, Cipriano UG, Fraga-Silva TFC, et al. Campanari DD, Cipriano UG, Fraga-Silva TFC, et al. Effect of dietary supplementation with omega-3 fatty acid on the generation of regulatory T lymphocytes and on antioxidant parameters and markers of oxidative stress in the liver tissue of IL-10 knockout mice. Nutrients. 2024;16:634.
129. Hüsing A, Kabar I, Schmidt HH. Lipids in liver transplant recipients. World J Gastroenterol. 2016;22:3315-24.
130. Lopes PC, Fuhrmann A, Sereno J, et al. Short and long term in vivo effects of cyclosporine A and sirolimus on genes and proteins involved in lipid metabolism in wistar rats. Metabolism. 2014;63:702-15.
131. Luo Y, Huang Z, Mou T, et al. SET8 mitigates hepatic ischemia/reperfusion injury in mice by suppressing MARK4/NLRP3 inflammasome pathway. Life Sci. 2021;273:119286.
132. Mohamed ZU, Varghese CT, Sudhakar A, et al. Prostaglandins for adult liver transplanted recipients. Cochrane Database Syst Rev. 2023;8:CD006006.
133. Qin X, Tan Z, Li Q, et al. Rosiglitazone attenuates acute kidney injury from hepatic ischemia-reperfusion in mice by inhibiting arachidonic acid metabolism through the PPAR-γ/NF-κB pathway. Inflamm Res. 2024;73:1765-80.
134. Cortes M, Pareja E, García-Cañaveras JC, et al. Metabolomics discloses donor liver biomarkers associated with early allograft dysfunction. J Hepatol. 2014;61:564-74.
135. Zhang W, Zhao Y, He Q, Lang R. Therapeutically targeting essential metabolites to improve immunometabolism manipulation after liver transplantation for hepatocellular carcinoma. Front Immunol. 2023;14:1211126.
136. Cai H, Qi S, Yan Q, Ling J, Du J, Chen L. Global proteome profiling of human livers upon ischemia/reperfusion treatment. Clin Proteomics. 2021;18:3.
137. Taylor-Robinson SD, Sargentoni J, Bell JD, et al. In vivo and in vitro hepatic phosphorus-31 magnetic resonance spectroscopy and electron microscopy in chronic ductopenic rejection of human liver allografts. Gut. 1998;42:735-43.
138. Yao L, Hu X, Dai K, et al. Mesenchymal stromal cells: promising treatment for liver cirrhosis. Stem Cell Res Ther. 2022;13:308.
139. Zhu XH, Wu YF, Qiu YD, Jiang CP, Ding YT. Liver-protecting effects of omega-3 fish oil lipid emulsion in liver transplantation. World J Gastroenterol. 2012;18:6141-7.
140. Jiang YZ, Zhao XY, Zhou GP, et al. Impact of immunosuppression level on liver allograft fibrosis after pediatric liver transplantation: a retrospective cohort study. Int J Surg. 2023;109:3450-8.
141. Jenssen T, Hartmann A. Post-transplant diabetes mellitus in patients with solid organ transplants. Nat Rev Endocrinol. 2019;15:172-88.
142. Jankowska I, Czubkowski P, Socha P, et al. Lipid metabolism and oxidative stress in children after liver transplantation treated with sirolimus. Pediatr Transplant. 2012;16:901-6.
143. Carrasco-Chaumel E, Roselló-Catafau J, Bartrons R, et al. Adenosine monophosphate-activated protein kinase and nitric oxide in rat steatotic liver transplantation. J Hepatol. 2005;43:997-1006.
144. Lu C, Xu C, Li S, Ni H, Yang J. Liraglutide and GLP-1(9-37) alleviated hepatic ischemia-reperfusion injury by inhibiting ferroptosis via GSK3β/Nrf2 pathway and SMAD159/Hepcidin/FTH pathway. Redox Biol. 2025;79:103468.
145. Xu B, Jiang M, Chu Y, et al. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. J Hepatol. 2018;68:773-82.
146. Zhan M, Liu D, Yao L, et al. Gas6/AXL alleviates hepatic ischemia/reperfusion injury by inhibiting ferroptosis via the PI3K/AKT pathway. Transplantation. 2024;108:e357-69.
147. Cai H, Zhang J, Xu H, et al. ALOX5 drives the pyroptosis of CD4+ T cells and tissue inflammation in rheumatoid arthritis. Sci Signal. 2024;17:eadh1178.
148. Ding K, Zhang Z, Han Z, et al. Liver ALKBH5 regulates glucose and lipid homeostasis independently through GCGR and mTORC1 signaling. Science. 2025;387:eadp4120.
149. Fatourou EM, Tsochatzis EA. Management of metabolic syndrome and cardiovascular risk after liver transplantation. Lancet Gastroenterol Hepatol. 2019;4:731-41.