REFERENCES
1. Haug CJ, Drazen JM. Artificial intelligence and machine learning in clinical medicine, 2023. N Engl J Med. 2023;388:1201-8.
2. Takada S, Maekawa S, Furihata T, et al. Succinyl-CoA-based energy metabolism dysfunction in chronic heart failure. Proc Natl Acad Sci U S A. 2022;119:e2203628119.
3. Talmor-Barkan Y, Bar N, Shaul AA, et al. Metabolomic and microbiome profiling reveals personalized risk factors for coronary artery disease. Nat Med. 2022;28:295-302.
4. Xu Y, Ritchie SC, Liang Y, et al. An atlas of genetic scores to predict multi-omic traits. Nature. 2023;616:123-31.
5. Poss AM, Maschek JA, Cox JE, et al. Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease. J Clin Invest. 2020;130:1363-76.
6. Chen AT, Zhang Y, Zhang J. Explainable machine learning and online calculators to predict heart failure mortality in intensive care units. ESC Heart Fail. 2024;Online ahead of print.
7. Lee AM, Hu J, Xu Y, et al; CKD Biomarkers Consortium. Using machine learning to identify metabolomic signatures of pediatric chronic kidney disease etiology. J Am Soc Nephrol. 2022;33:375-86.
8. Shen X, Wang C, Liang N, et al. Serum metabolomics identifies dysregulated pathways and potential metabolic biomarkers for hyperuricemia and gout. Arthritis Rheumatol. 2021;73:1738-48.
9. Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol. 2017;69:2657-64.
10. Michelhaugh SA, Januzzi JL Jr. Using artificial intelligence to better predict and develop biomarkers. Heart Fail Clin. 2022;18:275-85.
11. Antoniades C, Tousoulis D, Vavlukis M, et al. Perivascular adipose tissue as a source of therapeutic targets and clinical biomarkers. Eur Heart J. 2023;44:3827-44.
12. Pan J, Ng SM, Neubauer S, Rider OJ. Phenotyping heart failure by cardiac magnetic resonance imaging of cardiac macro- and microscopic structure: state of the art review. Eur Heart J Cardiovasc Imaging. 2023;24:1302-17.
13. Jin X, Ji X, Yin H, et al. Identification of potential targets of stress cardiomyopathy by a machine learning algorithm. CVIA. 2024;9:27.