REFERENCES
1. Hagström H, Shang Y, Hegmar H, Nasr P. Natural history and progression of metabolic dysfunction-associated steatotic liver disease. Lancet Gastroenterol Hepatol 2024;9:944-56.
2. Younossi ZM, Stepanova M, Ong J, et al. Nonalcoholic steatohepatitis is the most rapidly increasing indication for liver transplantation in the United States. Clin Gastroenterol Hepatol 2021;19:580-9.e5.
3. Younossi ZM, Harring M, Younossi Y, Ong JP, Alqahtani SA, Stepanova M. The impact of NASH to liver transplantations with hepatocellular carcinoma in the United States. Clin Gastroenterol Hepatol 2022;20:2915-7.e1.
4. Sanyal AJ, Van Natta ML, Clark J, et al; NASH Clinical Research Network (CRN). Prospective study of outcomes in adults with nonalcoholic fatty liver disease. N Engl J Med 2021;385:1559-69.
5. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016;64:73-84.
6. Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology 2023;77:1335-47.
7. Riazi K, Azhari H, Charette JH, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2022;7:851-61.
8. Llovet JM, Castet F, Heikenwalder M, et al. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol 2022;19:151-72.
9. Eslam M, Sanyal AJ, George J; International Consensus Panel. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 2020;158:1999-2014.e1.
10. Rinella ME, Lazarus JV, Ratziu V, et al; NAFLD Nomenclature consensus group. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol 2023;79:1542-56.
11. Hsu CL, Loomba R. From NAFLD to MASLD: implications of the new nomenclature for preclinical and clinical research. Nat Metab 2024;6:600-2.
12. Hagström H, Adams LA, Allen AM, et al. The future of international classification of diseases coding in steatotic liver disease: an expert panel Delphi consensus statement. Hepatol Commun 2024;8:e0386.
13. Kanwal F, Neuschwander-Tetri BA, Loomba R, Rinella ME. Metabolic dysfunction-associated steatotic liver disease: update and impact of new nomenclature on the American association for the study of liver diseases practice guidance on nonalcoholic fatty liver disease. Hepatology 2024;79:1212-9.
14. Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, et al. AASLD practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023;77:1797-835.
15. Allen AM, Younossi ZM, Diehl AM, Charlton MR, Lazarus JV. Envisioning how to advance the MASH field. Nat Rev Gastroenterol Hepatol 2024;21:726-38.
16. Loomba R, Wong VW. Implications of the new nomenclature of steatotic liver disease and definition of metabolic dysfunction-associated steatotic liver disease. Aliment Pharmacol Ther 2024;59:150-6.
17. Canivet CM, Boursier J, Loomba R. New nomenclature for nonalcoholic fatty liver disease: understanding metabolic dysfunction-associated steatotic liver disease, metabolic dysfunction- and alcohol-associated liver disease, and their implications in clinical practice. Semin Liver Dis 2024;44:35-42.
18. Pan Z, Yilmaz Y, Al-Busafi SA, Eslam M. The MAFLD definition identifies three homogenous groups of patients. Liver Int 2024;Online ahead of print.
19. Pan Z, Al-Busafi SA, Abdulla M, Fouad Y, Sebastiani G, Eslam M. MAFLD identifies patients with significant hepatic fibrosis better than MASLD. Hepatol Int 2024;18:964-72.
20. Pan Z, Derbala M, AlNaamani K, Ghazinian H, Fan JG, Eslam M. MAFLD criteria are better than MASLD criteria at predicting the risk of chronic kidney disease. Ann Hepatol 2024;29:101512.
21. Pan Z, Shiha G, Esmat G, Méndez-Sánchez N, Eslam M. MAFLD predicts cardiovascular disease risk better than MASLD. Liver Int 2024;44:1567-74.
22. Pennisi G, Infantino G, Celsa C, et al. Clinical outcomes of MAFLD versus NAFLD: a meta-analysis of observational studies. Liver Int 2024;44:2939-49.
23. Li M, Xie W. Are there all-cause mortality differences between metabolic dysfunction-associated steatotic liver disease subtypes? J Hepatol 2024;80:e53-4.
24. Díaz LA, Arab JP, Louvet A, Bataller R, Arrese M. The intersection between alcohol-related liver disease and nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2023;20:764-83.
25. Arab JP, Arrese M, Trauner M. Recent insights into the pathogenesis of nonalcoholic fatty liver disease. Annu Rev Pathol 2018;13:321-50.
26. Arab JP, Addolorato G, Mathurin P, Thursz MR. Alcohol-associated liver disease: integrated management with alcohol use disorder. Clin Gastroenterol Hepatol 2023;21:2124-34.
27. Israelsen M, Torp N, Johansen S, Thiele M, Krag A. MetALD: new opportunities to understand the role of alcohol in steatotic liver disease. Lancet Gastroenterol Hepatol 2023;8:866-8.
28. Association for the Study of the Liver (EASL); Electronic address: [email protected]; European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO); European Association for the Study of the Liver (EASL). EASL-EASD-EASO clinical practice guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J Hepatol 2024;81:492-542.
29. Petrie E, Gray M, Bril F. Metabolic characteristics of patients with MetALD: caveats of a new definition. Liver Int 2024;44:2929-38.
30. Ciardullo S, Mantovani A, Morieri ML, Muraca E, Invernizzi P, Perseghin G. Impact of MASLD and MetALD on clinical outcomes: a meta-analysis of preliminary evidence. Liver Int 2024;44:1762-7.
31. Pennisi G, Enea M, Romero-Gomez M, et al. Risk of liver-related events in metabolic dysfunction-associated steatohepatitis (MASH) patients with fibrosis: a comparative analysis of various risk stratification criteria. Hepatology 2024;79:912-25.
32. Talamantes S, Lisjak M, Gilglioni EH, Llamoza-Torres CJ, Ramos-Molina B, Gurzov EN. Non-alcoholic fatty liver disease and diabetes mellitus as growing aetiologies of hepatocellular carcinoma. JHEP Rep 2023;5:100811.
33. Simon TG, King LY, Chong DQ, et al. Diabetes, metabolic comorbidities, and risk of hepatocellular carcinoma: results from two prospective cohort studies. Hepatology 2018;67:1797-806.
34. Alexander M, Loomis AK, van der Lei J, et al. Risks and clinical predictors of cirrhosis and hepatocellular carcinoma diagnoses in adults with diagnosed NAFLD: real-world study of 18 million patients in four European cohorts. BMC Med 2019;17:95.
35. Kanwal F, Kramer JR, Li L, et al. Effect of metabolic traits on the risk of cirrhosis and hepatocellular cancer in nonalcoholic fatty liver disease. Hepatology 2020;71:808-19.
36. Habib S. Metabolic dysfunction-associated steatotic liver disease heterogeneity: need of subtyping. World J Gastrointest Pathophysiol 2024;15:92791.
37. García-Nieto E, Rodriguez-Duque JC, Rivas-Rivas C, et al. Clinical and molecular characterization of steatotic liver disease in the setting of immune-mediated inflammatory diseases. JHEP Rep 2024;6:101167.
38. Kanwal F, Kramer JR, Mapakshi S, et al. Risk of hepatocellular cancer in patients with non-alcoholic fatty liver disease. Gastroenterology 2018;155:1828-37.e2.
39. Byrne CD, Targher G. MASLD, MAFLD, or NAFLD criteria: have we re-created the confusion and acrimony surrounding metabolic syndrome? Metab Target Organ Damage 2024;4:10.
40. Schwärzler J, Grabherr F, Grander C, Adolph TE, Tilg H. The pathophysiology of MASLD: an immunometabolic perspective. Expert Rev Clin Immunol 2024;20:375-86.
41. Breasted JH. The edwin smith surgical papyrus. Available from: https://isac.uchicago.edu/sites/default/files/uploads/shared/docs/oip4.pdf. [Last accessed on 11 Nov 2024].
42. Ebbell B. The Papyrus Ebers: the greatest Egyptian medical document. Levin & Munksgaard;1937. Available from: https://search.worldcat.org/zh-cn/title/The-Papyrus-Ebers-:-the-greatest-Egyptian-medical-document/oclc/5435947. [Last accessed on 11 Nov 2024].
46. Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet 2006;7:21-33.
47. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity 2013;39:1-10.
48. Llovet JM, Willoughby CE, Singal AG, et al. Nonalcoholic steatohepatitis-related hepatocellular carcinoma: pathogenesis and treatment. Nat Rev Gastroenterol Hepatol 2023;20:487-503.
49. Molinari M, Kaltenmeier C, Samra PB, et al. Hepatic resection for hepatocellular carcinoma in nonalcoholic fatty liver disease: a systematic review and meta-analysis of 7226 patients. Ann Surg Open 2021;2:e065.
50. Chin KM, Prieto M, Cheong CK, et al. Outcomes after curative therapy for hepatocellular carcinoma in patients with non-alcoholic fatty liver disease: a meta-analysis and review of current literature. HPB 2021;23:1164-74.
51. Lin YP, Lin SH, Wang CC, et al. Impact of MAFLD on HBV-related stage 0/a hepatocellular carcinoma after curative resection. J Pers Med 2021;11:684.
52. Wong RJ, Chou C, Bonham CA, Concepcion W, Esquivel CO, Ahmed A. Improved survival outcomes in patients with non-alcoholic steatohepatitis and alcoholic liver disease following liver transplantation: an analysis of 2002-2012 United network for organ sharing data. Clin Transplant 2014;28:713-21.
53. Haldar D, Kern B, Hodson J, et al; European Liver and Intestine Transplant Association (ELITA). Outcomes of liver transplantation for non-alcoholic steatohepatitis: a European liver transplant registry study. J Hepatol 2019;71:313-22.
54. Zamora-Olaya JM, Tejero-Jurado R, Alañón-Martínez PE, et al. Donor atheromatous disease is a risk factor for hepatic artery thrombosis after liver transplantation. Clin Transplant 2024;38:e15405.
55. Holzner ML, Florman S, Schwartz ME, Tabrizian P. Outcomes of liver transplantation for nonalcoholic steatohepatitis-associated hepatocellular carcinoma. HPB 2022;24:470-7.
56. Lewin SM, Mehta N, Kelley RK, Roberts JP, Yao FY, Brandman D. Liver transplantation recipients with nonalcoholic steatohepatitis have lower risk hepatocellular carcinoma. Liver Transpl 2017;23:1015-22.
57. Hernandez-Alejandro R, Croome KP, Drage M, et al. A comparison of survival and pathologic features of non-alcoholic steatohepatitis and hepatitis C virus patients with hepatocellular carcinoma. World J Gastroenterol 2012;18:4145-9.
58. Kern B, Feurstein B, Fritz J, et al. High incidence of hepatocellular carcinoma and postoperative complications in patients with nonalcoholic steatohepatitis as a primary indication for deceased liver transplantation. Eur J Gastroenterol Hepatol 2019;31:205-10.
59. Sadler EM, Mehta N, Bhat M, et al. Liver transplantation for NASH-related hepatocellular carcinoma versus non-NASH etiologies of hepatocellular carcinoma. Transplantation 2018;102:640-7.
60. Young S, Sanghvi T, Rubin N, et al. Transarterial chemoembolization of hepatocellular carcinoma: propensity score matching study comparing survival and complications in patients with nonalcoholic steatohepatitis versus other causes cirrhosis. Cardiovasc Intervent Radiol 2020;43:65-75.
61. Schotten C, Bechmann LP, Manka P, et al. NAFLD-associated comorbidities in advanced stage HCC do not alter the safety and efficacy of yttrium-90 radioembolization. Liver Cancer 2019;8:491-504.
62. Brunson C, Struycken L, Schaub D, et al. Comparative outcomes of trans-arterial radioembolization in patients with non-alcoholic steatohepatitis/non-alcoholic fatty liver disease-induced HCC: a retrospective analysis. Abdom Radiol 2024;49:2714-25.
63. Rimassa L, Finn RS, Sangro B. Combination immunotherapy for hepatocellular carcinoma. J Hepatol 2023;79:506-15.
64. Gordan JD, Kennedy EB, Abou-Alfa GK, et al. Systemic therapy for advanced hepatocellular carcinoma: ASCO guideline update. J Clin Oncol 2024;42:1830-50.
65. Guzman G, Brunt EM, Petrovic LM, Chejfec G, Layden TJ, Cotler SJ. Does nonalcoholic fatty liver disease predispose patients to hepatocellular carcinoma in the absence of cirrhosis? Arch Pathol Lab Med 2008;132:1761-6.
66. Vilar-Gomez E, Calzadilla-Bertot L, Wai-Sun Wong V, et al. Fibrosis severity as a determinant of cause-specific mortality in patients with advanced nonalcoholic fatty liver disease: a multi-national cohort study. Gastroenterology 2018;155:443-57.e17.
67. Bhala N, Angulo P, van der Poorten D, et al. The natural history of nonalcoholic fatty liver disease with advanced fibrosis or cirrhosis: an international collaborative study. Hepatology 2011;54:1208-16.
68. Ekstedt M, Hagström H, Nasr P, et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 2015;61:1547-54.
69. Orci LA, Sanduzzi-Zamparelli M, Caballol B, et al. Incidence of hepatocellular carcinoma in patients with nonalcoholic fatty liver disease: a systematic review, meta-analysis, and meta-regression. Clin Gastroenterol Hepatol 2022;20:283-92.e10.
70. Ioannou GN. Epidemiology and risk-stratification of NAFLD-associated HCC. J Hepatol 2021;75:1476-84.
71. Behari J, Gougol A, Wang R, et al. Incidence of hepatocellular carcinoma in nonalcoholic fatty liver disease without cirrhosis or advanced liver fibrosis. Hepatol Commun 2023;7:e00183.
72. Singh S, Allen AM, Wang Z, Prokop LJ, Murad MH, Loomba R. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin Gastroenterol Hepatol 2015;13:643-54.e1-9.
73. Roskilly A, Hicks A, Taylor EJ, Jones R, Parker R, Rowe IA. Fibrosis progression rate in a systematic review of placebo-treated nonalcoholic steatohepatitis. Liver Int 2021;41:982-95.
74. Le P, Payne JY, Zhang L, et al. Disease state transition probabilities across the spectrum of NAFLD: a systematic review and meta-analysis of paired biopsy or imaging studies. Clin Gastroenterol Hepatol 2023;21:1154-68.
75. Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 2018;67:123-33.
76. Younossi ZM, Blissett D, Blissett R, et al. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology 2016;64:1577-86.
77. White DL, Kanwal F, El-Serag HB. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin Gastroenterol Hepatol 2012;10:1342-59.e2.
78. Pennisi G, Enea M, Romero-Gomez M, et al. Liver-related and extrahepatic events in patients with non-alcoholic fatty liver disease: a retrospective competing risks analysis. Aliment Pharmacol Ther 2022;55:604-15.
79. Angulo P, Kleiner DE, Dam-Larsen S, et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 2015;149:389-97.e10.
80. Sanyal AJ, Harrison SA, Ratziu V, et al. The natural history of advanced fibrosis due to nonalcoholic steatohepatitis: data from the simtuzumab trials. Hepatology 2019;70:1913-27.
81. Vitellius C, Desjonqueres E, Lequoy M, et al. MASLD-related HCC: multicenter study comparing patients with and without cirrhosis. JHEP Rep 2024;6:101160.
82. Mittal S, El-Serag HB, Sada YH, et al. Hepatocellular carcinoma in the absence of cirrhosis in United States veterans is associated with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2016;14:124-31.e1.
83. Wong CR, Njei B, Nguyen MH, Nguyen A, Lim JK. Survival after treatment with curative intent for hepatocellular carcinoma among patients with vs without non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2017;46:1061-9.
84. Stine JG, Wentworth BJ, Zimmet A, et al. Systematic review with meta-analysis: risk of hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis compared to other liver diseases. Aliment Pharmacol Ther 2018;48:696-703.
85. Tan DJH, Ng CH, Lin SY, et al. Clinical characteristics, surveillance, treatment allocation, and outcomes of non-alcoholic fatty liver disease-related hepatocellular carcinoma: a systematic review and meta-analysis. Lancet Oncol 2022;23:521-30.
86. Kodama T, Takehara T. Molecular genealogy of metabolic-associated hepatocellular carcinoma. Semin Liver Dis 2024;44:147-58.
87. Oh S, Baek YH, Jung S, et al. Identification of signature gene set as highly accurate determination of metabolic dysfunction-associated steatotic liver disease progression. Clin Mol Hepatol 2024;30:247-62.
88. Huang G, Wallace DF, Powell EE, Rahman T, Clark PJ, Subramaniam VN. Gene variants implicated in steatotic liver disease: opportunities for diagnostics and therapeutics. Biomedicines 2023;11:2809.
89. Stender S, Loomba R. PNPLA3 genotype and risk of liver and all-cause mortality. Hepatology 2020;71:777-9.
90. Lewis CM, Vassos E. Polygenic risk scores: from research tools to clinical instruments. Genome Med 2020;12:44.
91. Yang J, Trépo E, Nahon P, et al. PNPLA3 and TM6SF2 variants as risk factors of hepatocellular carcinoma across various etiologies and severity of underlying liver diseases. Int J Cancer 2019;144:533-44.
92. Bianco C, Jamialahmadi O, Pelusi S, et al. Non-invasive stratification of hepatocellular carcinoma risk in non-alcoholic fatty liver using polygenic risk scores. J Hepatol 2021;74:775-82.
93. Thomas CE, Diergaarde B, Kuipers AL, et al. NAFLD polygenic risk score and risk of hepatocellular carcinoma in an East Asian population. Hepatol Commun 2022;6:2310-21.
94. Chalasani N, Vilar-Gomez E, Loomba R, et al. PNPLA3 rs738409, age, diabetes, sex, and advanced fibrosis jointly contribute to the risk of major adverse liver outcomes in metabolic dysfunction-associated steatotic liver disease. Hepatology 2024;80:1212-26.
95. Muthiah MD, Sanyal AJ. Burden of disease due to nonalcoholic fatty liver disease. Gastroenterol Clin North Am 2020;49:1-23.
96. Li J, Zou B, Yeo YH, et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2019;4:389-98.
97. Ye Q, Zou B, Yeo YH, et al. Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2020;5:739-52.
98. Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018;15:11-20.
99. Unalp-Arida A, Ruhl CE. Patatin-like phospholipase domain-containing protein 3 I148M and liver fat and fibrosis scores predict liver disease mortality in the U.S. population. Hepatology 2020;71:820-34.
100. Petta S, Armandi A, Bugianesi E. Impact of PNPLA3 I148M on clinical outcomes in patients with MASLD. Liver Int 2024;Online ahead of print.
101. Lavrado NC, Salles GF, Cardoso CRL, et al. Impact of PNPLA3 and TM6SF2 polymorphisms on the prognosis of patients with MASLD and type 2 diabetes mellitus. Liver Int 2024;44:1042-50.
102. Seko Y, Yamaguchi K, Shima T, et al. Differential effects of genetic polymorphism on comorbid disease in metabolic dysfunction-associated steatotic liver disease. Clin Gastroenterol Hepatol 2024;22:1436-43.e4.
103. Seko Y, Yamaguchi K, Shima T, et al. Clinical utility of genetic variants in PNPLA3 and TM6SF2 to predict liver-related events in metabolic dysfunction-associated steatotic liver disease. Liver Int 2024;Online ahead of print.
104. Sripongpun P, Kim WR, Mannalithara A, et al. The steatosis-associated fibrosis estimator (SAFE) score: a tool to detect low-risk NAFLD in primary care. Hepatology 2023;77:256-67.
105. Sripongpun P, Kaewdech A, Udompap P, Kim WR. Characteristics and long-term mortality of individuals with MASLD, MetALD, and ALD, and the utility of SAFE score. JHEP Rep 2024;6:101127.
106. Kaplan DE, Teerlink CC, Schwantes-An TH, et al. Clinical and genetic risk factors for progressive fibrosis in metabolic dysfunction-associated steatotic liver disease. Hepatol Commun 2024;8:e0487.
107. Hsu CK, Kuo CC, Lai CC. Refining metabolic syndrome trait definitions in MASLD: a call for greater precision in cardiovascular risk assessment. Liver Int 2024;Online ahead of print.
108. Burke L, Hinkson A, Haghnejad V, Jones R, Parker R, Rowe IA. Hepatocellular carcinoma risk scores for non-viral liver disease: a systematic review and meta-analysis. JHEP Reports 2024;Online ahead of print.
109. Kalligeros M, Henry L, Younossi ZM. Metabolic dysfunction-associated steatotic liver disease and its link to cancer. Metabolism 2024;160:156004.
110. Thomas JA, Kendall BJ, Dalais C, Macdonald GA, Thrift AP. Hepatocellular and extrahepatic cancers in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Cancer 2022;173:250-62.
112. Kazankov K, Jørgensen SMD, Thomsen KL, et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol 2019;16:145-59.
113. Hendrikx T, Porsch F, Kiss MG, et al. Soluble TREM2 levels reflect the recruitment and expansion of TREM2+ macrophages that localize to fibrotic areas and limit NASH. J Hepatol 2022;77:1373-85.
114. Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 2015;149:1226-39.e4.
115. Sia D, Jiao Y, Martinez-Quetglas I, et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology 2017;153:812-26.
116. Jaitin DA, Adlung L, Thaiss CA, et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 2019;178:686-98.e14.
117. Fredrickson G, Florczak K, Barrow F, et al. TREM2 macrophages mediate the beneficial effects of bariatric surgery against MASH. Hepatology 2024;Online ahead of print.
118. Ding T, Xu J, Wang F, et al. High tumor-infiltrating macrophage density predicts poor prognosis in patients with primary hepatocellular carcinoma after resection. Hum Pathol 2009;40:381-9.
119. Kuang DM, Zhao Q, Peng C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med 2009;206:1327-37.
120. Wang Q, Lin Y, Yu W, Chen X, He Q, Ye Z. The core role of macrophages in hepatocellular carcinoma: the definition of molecular subtypes and the prognostic risk system. Front Pharmacol 2023;14:1228052.
121. Zhao S, Jang C, Liu J, et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature 2020;579:586-91.
122. Hu C, Xu B, Wang X, et al. Gut microbiota-derived short-chain fatty acids regulate group 3 innate lymphoid cells in HCC. Hepatology 2023;77:48-64.
123. Qin S, Chen M, Cheng AL, et al; IMbrave050 investigators. Atezolizumab plus bevacizumab versus active surveillance in patients with resected or ablated high-risk hepatocellular carcinoma (IMbrave050): a randomised, open-label, multicentre, phase 3 trial. Lancet 2023;402:1835-47.
124. Lencioni R, Kudo M, Erinjeri J, et al. EMERALD-1: a phase 3, randomized, placebo-controlled study of transarterial chemoembolization combined with durvalumab with or without bevacizumab in participants with unresectable hepatocellular carcinoma eligible for embolization. JCO 2024;42:LBA432.
125. Llovet J, Finn R, Ren Z, et al. LBA3 transarterial chemoembolization (TACE) with or without lenvatinib (len) + pembrolizumab (pembro) for intermediate-stage hepatocellular carcinoma (HCC): phase III LEAP-012 study. Annals of Oncology 2024;35:S1229.
126. Llovet JM, Ricci S, Mazzaferro V, et al; SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:378-90.
127. Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 2009;10:25-34.
128. Kudo M, Finn RS, Qin S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 2018;391:1163-73.
129. Finn RS, Qin S, Ikeda M, et al; IMbrave150 Investigators. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 2020;382:1894-905.
130. Ren Z, Xu J, Bai Y, et al; ORIENT-32 study group. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, phase 2-3 study. Lancet Oncol 2021;22:977-90.
131. Kelley RK, Rimassa L, Cheng AL, et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 2022;23:995-1008.
132. Abou-Alfa GK, Lau G, Kudo M, et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid 2022;1:EVIDoa2100070.
133. Qin S, Kudo M, Meyer T, et al. Tislelizumab vs sorafenib as first-line treatment for unresectable hepatocellular carcinoma: a phase 3 randomized clinical trial. JAMA Oncol 2023;9:1651-9.
134. Qin S, Chan SL, Gu S, et al; CARES-310 Study Group. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): a randomised, open-label, international phase 3 study. Lancet 2023;402:1133-46.
135. Galle PR, Decaens T, Kudo M, et al. Nivolumab (NIVO) plus ipilimumab (IPI) vs lenvatinib (LEN) or sorafenib (SOR) as first-line treatment for unresectable hepatocellular carcinoma (uHCC): first results from checkmate 9DW. JCO 2024;42:LBA4008.
136. Pfister D, Núñez NG, Pinyol R, et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 2021;592:450-6.
137. Ma C, Kesarwala AH, Eggert T, et al. NAFLD causes selective CD4+ T lymphocyte loss and promotes hepatocarcinogenesis. Nature 2016;531:253-7.
138. Heinrich B, Brown ZJ, Diggs LP, et al. Steatohepatitis impairs T-cell-directed immunotherapies against liver tumors in mice. Gastroenterology 2021;160:331-45.e6.
139. Dudek M, Pfister D, Donakonda S, et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 2021;592:444-9.
140. Dudek M, Tacke F. Immature neutrophils bring anti-PD-1 therapy in NASH-HCC to maturity. Gut 2022;Online ahead of print.
141. Leslie J, Mackey JBG, Jamieson T, et al. CXCR2 inhibition enables NASH-HCC immunotherapy. Gut 2022;71:2093-106.
142. Espinoza M, Muquith M, Lim M, Zhu H, Singal AG, Hsiehchen D. Disease etiology and outcomes after atezolizumab plus bevacizumab in hepatocellular carcinoma: post-hoc analysis of IMbrave150. Gastroenterology 2023;165:286-8.e4.
143. Llovet JM, Heikenwalder M. Atezolizumab plus bevacizumab in advanced HCC: efficacy in NASH-specific etiology. Gastroenterology 2023;165:1308-10.
144. Dong T, Li J, Liu Y, et al. Roles of immune dysregulation in MASLD. Biomed Pharmacother 2024;170:116069.
145. Donne R, Lujambio A. The liver cancer immune microenvironment: therapeutic implications for hepatocellular carcinoma. Hepatology 2023;77:1773-96.
146. Zhou PY, Zhou C, Gan W, et al. Single-cell and spatial architecture of primary liver cancer. Commun Biol 2023;6:1181.
147. Yahoo N, Dudek M, Knolle P, Heikenwälder M. Role of immune responses in the development of NAFLD-associated liver cancer and prospects for therapeutic modulation. J Hepatol 2023;79:538-51.
148. Wang X, Zhang L, Dong B. Molecular mechanisms in MASLD/MASH-related HCC. Hepatology 2024;Online ahead of print.
149. Guilliams M, Bonnardel J, Haest B, et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 2022;185:379-96.e38.
150. Tan J, Fan W, Liu T, et al. TREM2+ macrophages suppress CD8+ T-cell infiltration after transarterial chemoembolisation in hepatocellular carcinoma J Hepatol 2023. pp. 126-40.
151. Meyer T, Galani S, Lopes A, Vogel A. Aetiology of liver disease and response to immune checkpoint inhibitors: an updated meta-analysis confirms benefit in those with non-viral liver disease. J Hepatol 2023;79:e73-6.
152. Rivera-Esteban J, Muñoz-Martínez S, Higuera M, et al. Phenotypes of metabolic dysfunction-associated steatotic liver disease-associated hepatocellular carcinoma. Clin Gastroenterol Hepatol 2024;22:1774-89.e8.