REFERENCES

1. Gass M, Dawson-Hughes B. Preventing osteoporosis-related fractures: an overview. Am J Med. 2006;119:S3-11.

2. Sözen T, Özışık L, Başaran NÇ. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4:46-56.

3. Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature. 2003;423:349-55.

4. Kanis JA, Cooper C, Rizzoli R, Reginster JY. Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis (ESCEO) and the Committees of Scientific Advisors and National Societies of the International Osteoporosis Foundation (IOF). Correction to: European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2020;31:209.

5. Iolascon G, Moretti A, Toro G, Gimigliano F, Liguori S, Paoletta M. Pharmacological therapy of osteoporosis: what's new? Clin Interv Aging. 2020;15:485-91.

6. Pinkerton JV, Dalkin AC. Combination therapy for treatment of osteoporosis: a review. Am J Obstet Gynecol. 2007;197:559-65.

7. Clynes MA, Harvey NC, Curtis EM, Fuggle NR, Dennison EM, Cooper C. The epidemiology of osteoporosis. Br Med Bull. 2020;133:105-17.

8. Ansari MD, khan I, Solanki P, et al. Fabrication and optimization of raloxifene loaded spanlastics vesicle for transdermal delivery. J Drug Deliv Sci Tec. 2022;68:103102.

9. Ogbole OO, Akinleye TE, Segun PA, Faleye TC, Adeniji AJ. In vitro antiviral activity of twenty-seven medicinal plant extracts from Southwest Nigeria against three serotypes of echoviruses. Virol J. 2018;15:110.

10. Palacios S, Silverman SL, de Villiers TJ, et al. Bazedoxifene Study Group. A 7-year randomized, placebo-controlled trial assessing the long-term efficacy and safety of bazedoxifene in postmenopausal women with osteoporosis: effects on bone density and fracture. Menopause. 2015;22:806-13.

11. Nuti R, Brandi ML, Checchia G, et al. Guidelines for the management of osteoporosis and fragility fractures. Intern Emerg Med. 2019;14:85-102.

12. Murthy A, Ravi PR, Kathuria H, Malekar S. Oral Bioavailability Enhancement of Raloxifene with Nanostructured Lipid Carriers. Nanomaterials. 2020;10:1085.

13. Saini D, Fazil M, Ali MM, Baboota S, Ali J. Formulation, development and optimization of raloxifene-loaded chitosan nanoparticles for treatment of osteoporosis. Drug Deliv. 2015;22:823-36.

14. Uemura Y, Tanaka S, Miyazaki T, et al. Adequate Treatment of Osteoporosis (A-TOP) research group. Study design of multi-center, open-label randomized controlled, head-to-head trial comparing minodronic acid and raloxifene: Japanese osteoporosis intervention trial (JOINT)-04. J Bone Miner Metab. 2019;37:491-5.

15. Turner AS. Animal models of osteoporosis--necessity and limitations. Eur Cell Mater. 2001;1:66-81.

16. Tsuruoka S, Hasegawa G, Kaneda T, Maeda A, Fujimura A. Dosing time-dependent effect of raloxifene on plasma fibrinogen concentration in ovariectomized rats. Chronobiol Int. 2008;25:808-18.

17. Mahmood S, Mandal UK, Chatterjee B. Transdermal delivery of raloxifene HCl via ethosomal system: Formulation, advanced characterizations and pharmacokinetic evaluation. Int J Pharm. 2018;542:36-46.

18. Yedavally-Yellayi S, Ho AM, Patalinghug EM. Update on osteoporosis. Prim Care. 2019;46:175-90.

19. Xia B, Li Y, Zhou J, Tian B, Feng L. Identification of potential pathogenic genes associated with osteoporosis. Bone Joint Res. 2017;6:640-8.

20. Zakir F, Ahmad A, Farooq U, et al. Design and development of a commercially viable in situ nanoemulgel for the treatment of postmenopausal osteoporosis. Nanomedicine. 2020;15:1167-87.

21. Ahmad N, Banala VT, Kushwaha P, et al. Quercetin-loaded solid lipid nanoparticles improve osteoprotective activity in an ovariectomized rat model: a preventive strategy for post-menopausal osteoporosis. RSC Adv. 2016;6:97613-28.

22. Lüthje P, Nurmi-Lüthje I, Tavast N, Villikka A, Kataja M. Evaluation of minimal fracture liaison service resource: costs and survival in secondary fracture prevention-a prospective one-year study in South-Finland. Aging Clin Exp Res. 2021;33:3015-27.

23. Armstrong MJ, Okun MS. Diagnosis and treatment of parkinson disease: a review. JAMA. 2020;323:548-60.

24. Morita M, Sato Y, Iwasaki R, et al. Selective estrogen receptor modulators suppress Hif1α protein accumulation in mouse osteoclasts. PLoS One. 2016;11:e0165922.

25. Fink HA, MacDonald R, Forte ML, et al. Long-term drug therapy and drug discontinuations and holidays for osteoporosis fracture prevention: a systematic review. Ann Intern Med. 2019;171:37-50.

26. Lorentzon M. Treating osteoporosis to prevent fractures: current concepts and future developments. J Intern Med. 2019;285:381-94.

27. Yanik B, Bavbek N, Yanik T, et al. The effect of alendronate, risedronate, and raloxifene on renal functions, based on the Cockcroft and Gault method, in postmenopausal women. Ren Fail. 2007;29:471-6.

28. Takashi Y, Kawanami D, Fukumoto S. FGF23 and hypophosphatemic rickets/osteomalacia. Curr Osteoporos Rep. 2021;19:669-75.

29. Reginato AJ, Coquia JA. Musculoskeletal manifestations of osteomalacia and rickets. Best Pract Res Clin Rheumatol. 2003;17:1063-80.

30. Fukumoto S. FGF23-related hypophosphatemic rickets/osteomalacia: diagnosis and new treatment. J Mol Endocrinol. 2021;66:R57-65.

31. Manios Y, Moschonis G, Lambrinou CP, et al. Food4Me Study. Associations of vitamin D status with dietary intakes and physical activity levels among adults from seven European countries: the Food4Me study. Eur J Nutr. 2018;57:1357-68.

32. Minisola S, Colangelo L, Pepe J, Diacinti D, Cipriani C, Rao SD. Osteomalacia and Vitamin D status: a clinical update 2020. JBMR Plus. 2021;5:e10447.

33. Endo I, Fukumoto S, Ozono K, et al. Clinical usefulness of measurement of fibroblast growth factor 23 (FGF23) in hypophosphatemic patients: proposal of diagnostic criteria using FGF23 measurement. Bone. 2008;42:1235-9.

34. Kinoshita Y, Fukumoto S. X-linked hypophosphatemia and FGF23-related hypophosphatemic diseases: prospect for new treatment. Endocr Rev. 2018;39:274-91.

35. Goldsweig BK, Carpenter TO. Hypophosphatemic rickets: lessons from disrupted FGF23 control of phosphorus homeostasis. Curr Osteoporos Rep. 2015;13:88-97.

36. Hutchison FN, Bell NH. Osteomalacia and rickets. Semin Nephrol. 1992;12:127-45.

37. Marques JVO, Moreira CA, Borba VZC. New treatments for rare bone diseases: hypophosphatemic rickets/osteomalacia. Arch Endocrinol Metab. 2022;66:658-65.

38. Vilaca T, Velmurugan N, Smith C, Abrahamsen B, Eastell R. Osteomalacia as a Complication of Intravenous Iron Infusion: a systematic review of case reports. J Bone Miner Res. 2022;37:1188-99.

39. Kaszczewska M, Chudziński W, Kaszczewski P, et al. Cystic parathyroid adenomas as a risk factor for severe hypercalcemia. J Clin Med. 2023;12:4939.

40. Marques JV, Moreira CA. Primary hyperparathyroidism. Best Pract Res Clin Rheumatol. 2020;34:101514.

41. Mukherjee S, Arya AK, Bhadada SK, et al. Characterization of primary hyperparathyroidism based on target organ involvement: An analysis from the Indian PHPT registry. Clin Endocrinol. 2023;99:158-64.

42. Bilezikian JP, Khan AA, Silverberg SJ, et al. International Workshop on Primary Hyperparathyroidism. Evaluation and management of primary hyperparathyroidism: summary statement and guidelines from the fifth international workshop. J Bone Miner Res. 2022;37:2293-314.

43. Minisola S, Arnold A, Belaya Z, et al. Epidemiology, pathophysiology, and genetics of primary hyperparathyroidism. J Bone Miner Res. 2022;37:2315-29.

44. Bilezikian JP, Silverberg SJ, Bandeira F, et al. Management of primary hyperparathyroidism. J Bone Miner Res. 2022;37:2391-403.

45. Kowalski GJ, Buła G, Żądło D, Gawrychowska A, Gawrychowski J. Primary hyperparathyroidism. Endokrynol Pol. 2020;71:260-70.

46. Samy JVRA, Sayanam RRA, Balasubramanian C, et al. Effect of a polyherbal formulation on L-thyroxine induced hyperthyroidism in a rat model: in vitro and in vivo analysis and identification of bioactive phytochemicals. Int J Biol Macromol. 2023;237:124140.

47. Juhlin CC, Erickson LA. Genomics and epigenomics in parathyroid neoplasia: from bench to surgical pathology practice. Endocr Pathol. 2021;32:17-34.

48. Fraser WD. Hyperparathyroidism. Lancet. 2009;374:145-58.

49. Aasenden R, Peebles TC. Effects of fluoride supplementation from birth on human deciduous and permanent teeth. Arch Oral Biol. 1974;19:321-6.

50. Srivastava S, Flora SJS. Fluoride in drinking water and skeletal fluorosis: a review of the global impact. Curr Environ Health Rep. 2020;7:140-6.

51. Browne D, Whelton H, O'Mullane D. Fluoride metabolism and fluorosis. J Dent. 2005;33:177-86.

52. Fejerskov O, Manji F, Baelum V. The nature and mechanisms of dental fluorosis in man. J Dent Res. 1990;69 Spec No:692-700; discussion 721.

53. Pandit J, Garg M, Jain NK. Miconazole nitrate bearing ultraflexible liposomes for the treatment of fungal infection. J Liposome Res. 2014;24:163-9.

54. Mantovani A, Gatti D, Zoppini G, et al. Association between nonalcoholic fatty liver disease and reduced bone mineral density in children: a meta-analysis. Hepatology. 2019;70:812-23.

55. Targher G, Lonardo A, Rossini M. Nonalcoholic fatty liver disease and decreased bone mineral density: is there a link? J Endocrinol Invest. 2015;38:817-25.

56. Filip R, Radzki RP, Bieńko M. Novel insights into the relationship between nonalcoholic fatty liver disease and osteoporosis. Clin Interv Aging. 2018;13:1879-91.

57. Pan B, Cai J, Zhao P, et al. Relationship between prevalence and risk of osteoporosis or osteoporotic fracture with non-alcoholic fatty liver disease: a systematic review and meta-analysis. Osteoporos Int. 2022;33:2275-86.

58. Wang YD, Wu LL, Qi XY, et al. New insight of obesity-associated NAFLD: dysregulated "crosstalk" between multi-organ and the liver? Genes Dis. 2023;10:799-812.

59. Vachliotis ID, Anastasilakis AD, Goulas A, Goulis DG, Polyzos SA. Nonalcoholic fatty liver disease and osteoporosis: a potential association with therapeutic implications. Diabetes Obes Metab. 2022;24:1702-20.

60. Rahimi L, Rajpal A, Ismail-Beigi F. Glucocorticoid-induced fatty liver disease. Diabetes Metab Syndr Obes. 2020;13:1133-45.

61. Eslam M, El-Serag HB, Francque S, et al. Metabolic (dysfunction)-associated fatty liver disease in individuals of normal weight. Nat Rev Gastro Hepat. 2022;19:638-51.

62. Barchetta I, Cimini FA, Cavallo MG. Vitamin D and metabolic dysfunction-associated fatty liver disease (MAFLD): an update. Nutrients. 2020;12:3302.

63. Fabbrini E, Magkos F. Hepatic steatosis as a marker of metabolic dysfunction. Nutrients. 2015;7:4995-5019.

64. Staufer K, Stauber RE. Steatotic liver disease: metabolic dysfunction, alcohol, or both? Biomedicines. 2023;11:2108.

65. Camacho PM. Metabolic bone diseases: a case-based approach. Switzerland: Springer Cham; 2019.

66. Brickley MB, Ives R, Mays S. The bioarchaeology of metabolic bone disease. Academic Press; 2020.

67. Charoenngam N, Nasr A, Shirvani A, Holick MF. Hereditary metabolic bone diseases: a review of pathogenesis, diagnosis and management. Genes. 2022;13:1880.

68. Charoenngam N, Cevik MB, Holick MF. Diagnosis and management of pediatric metabolic bone diseases associated with skeletal fragility. Curr Opin Pediatr. 2020;32:560-73.

69. Nordic nutrition recommendations 2023. Available from: https://pub.norden.org/nord2023-003/ [Last accessed on 25 Dec 2023].

70. NORDIC NUTRITION RECOMMENDATIONS 2023. Vitamin D. Available from: https://pub.norden.org/nord2023-003/vitamin-d-.html [Last accessed on 25 Dec 2023].

71. Nurmi-Lüthje I, Tiihonen R, Paattiniemi EL, et al. Remarkable improvement in serum 25-hydroxyvitamin levels among hip fracture patients over a 12-year period: a prospective study in South-eastern Finland. Osteoporos Int. 2018;29:837-45.

72. Creo AL, Epp LM, Buchholtz JA, Tebben PJ. Prevalence of metabolic bone disease in tube-fed children receiving elemental formula. Horm Res Paediatr. 2018;90:291-8.

73. Young CM, Fahrholz CN, Manikowski KJ, Hum JM, Skinner BW. Chapter 34 - Drugs for metabolic bone disease. A worldwide yearly survey of new data in adverse drug reactions. Elsevier; 2022. pp. 471-81.

74. Langdahl BL. Overview of treatment approaches to osteoporosis. Br J Pharmacol. 2021;178:1891-906.

75. Khuroo T, Verma D, Talegaonkar S, Padhi S, Panda AK, Iqbal Z. Topotecan-tamoxifen duple PLGA polymeric nanoparticles: investigation of in vitro, in vivo and cellular uptake potential. Int J Pharm. 2014;473:384-94.

76. Gong L, Zhang YY, Yang N, Qian HJ, Zhang LK, Tan MS. Raloxifene prevents early periprosthetic bone loss for postmenopausal women after uncemented total hip arthroplasty: a randomized placebo-controlled clinical trial. Orthop Surg. 2020;12:1074-83.

77. Delmas PD, Bjarnason NH, Mitlak BH, et al. Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N Engl J Med. 1997;337:1641-7.

Metabolism and Target Organ Damage
ISSN 2769-6375 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/