REFERENCES

1. Corrêa-Junior D, Parente CET, Frases S. Hazards associated with the combined application of fungicides and poultry litter in agricultural areas. J Xenobiot. 2024;14:110-34.

2. Fonseca A, Kenney S, Van Syoc E, et al. Investigating antibiotic free feed additives for growth promotion in poultry: effects on performance and microbiota. Poult Sci. 2024;103:103604.

3. Wickramasuriya SS, Ault J, Ritchie S, Gay CG, Lillehoj HS. Alternatives to antibiotic growth promoters for poultry: a bibliometric analysis of the research journals. Poult Sci. 2024;103:103987.

4. Hill C, Guarner F, Reid G, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11:506-14.

5. Gioia D, Aloisio I, Mazzola G, Biavati B. Bifidobacteria: their impact on gut microbiota composition and their applications as probiotics in infants. Appl Microbiol Biotechnol. 2014;98:563-77.

6. Abd El-Hack ME, El-Saadony MT, Shafi ME, et al. Probiotics in poultry feed: a comprehensive review. J Anim Physiol Anim Nutr. 2020;104:1835-50.

7. Grande SMM, Argañaraz Martı Nez E, Babot JD, et al. The species and physiological diversity of Bifidobacterium genus in Gallus gallus domesticus are influenced by feeding model and niche adaptations. Benef Microbes. 2024;15:19-38.

8. Lee JH, O’Sullivan DJ. Genomic insights into bifidobacteria. Microbiol Mol Biol Rev. 2010;74:378-416.

9. Sharma M, Wasan A, Sharma RK. Recent developments in probiotics: an emphasis on Bifidobacterium. Food Bioscience. 2021;41:100993.

10. Allende A, Alvarez-Ordóñez A, Bortolaia V, et al; EFSA Panel on Biological Hazards (BIOHAZ). Update of the list of qualified presumption of safety (QPS) recommended microbiological agents intentionally added to food or feed as notified to EFSA 22: Suitability of taxonomic units notified to EFSA until March 2025. EFSA J. 2025;23:e9510.

11. Tripathy A, Dash J, Kancharla S, et al. Probiotics: a promising candidate for management of colorectal cancer. Cancers. 2021;13:3178.

12. Abou-Kassem DE, Elsadek MF, Abdel-Moneim AE, et al. Growth, carcass characteristics, meat quality, and microbial aspects of growing quail fed diets enriched with two different types of probiotics (Bacillus toyonensis and Bifidobacterium bifidum). Poult Sci. 2021;100:84-93.

13. Feng Y, Wu X, Hu D, Wang C, Chen Q, Ni Y. Comparison of the effects of feeding compound probiotics and antibiotics on growth performance, gut microbiota, and small intestine morphology in yellow-feather broilers. Microorganisms. 2023;11:2308.

14. Galosi L, Desantis S, Roncarati A, et al. Positive influence of a probiotic mixture on the intestinal morphology and microbiota of farmed guinea fowls (Numida meleagris). Front Vet Sci. 2021;8:743899.

15. Lokapirnasari WP, Pribadi TB, Arif AA, et al. Potency of probiotics Bifidobacterium spp. and Lactobacillus casei to improve growth performance and business analysis in organic laying hens. Vet World. 2019;12:860-7.

16. Mnisi CM, Njeri FM, Maina AN, et al. A review on the potential use of eubiotics in non-chicken poultry species. Trop Anim Health Prod. 2025;57:4466.

17. Idowu PA, Mpofu TJ, Magoro AM, Modiba MC, Nephawe KA, Mtileni B. Impact of probiotics on chicken gut microbiota, immunity, behavior, and productive performance-a systematic review. Front Anim Sci. 2025;6:1562527.

18. Obianwuna UE, Agbai Kalu N, Wang J, et al. Recent trends on mitigative effect of probiotics on oxidative-stress-induced gut dysfunction in broilers under necrotic enteritis challenge: a review. Antioxidants. 2023;12:911.

19. Chen J, Chen X, Ho CL. Recent development of probiotic Bifidobacteria for treating human diseases. Front Bioeng Biotechnol. 2021;9:770248.

20. He BL, Xiong Y, Hu TG, Zong MH, Wu H. Bifidobacterium spp. as functional foods: a review of current status, challenges, and strategies. Crit Rev Food Sci Nutr. 2023;63:8048-65.

21. Zhang X, Cao J, Han S, et al. Bacillus subtilis: applications in the livestock and poultry industry in recent years. Anim Biosci. 2025;Epub ahead of print.

22. Pang Y, Zhang H, Wen H, et al. Yeast probiotic and yeast products in enhancing livestock feeds utilization and performance: an overview. J Fungi. 2022;8:1191.

23. Sirisopapong M, Shimosato T, Okrathok S, Khempaka S. Assessment of lactic acid bacteria isolated from the chicken digestive tract for potential use as poultry probiotics. Anim Biosci. 2023;36:1209-20.

24. Jurić M, Goksen G, Donsì F, Jurić S. Innovative applications of electrospun nanofibers loaded with bacterial cells towards sustainable agri-food systems and regulatory compliance. Food Eng Rev. 2024;16:270-303.

25. Gutiérrez-álzate K, Beltrán-cotta LA, dos Santos Rekowsky BS, Cavalheiro CP, Pereira da Costa M. Micro- and nanoencapsulation of probiotics: exploring their impact on animal-origin foods. ACS Food Sci Technol. 2024;4:2799-812.

26. Dev K, Begum J, Biswas A, et al. Hepatic transcriptome analysis reveals altered lipid metabolism and consequent health indices in chicken supplemented with dietary Bifidobacterium bifidum and mannan-oligosaccharides. Sci Rep. 2021;11:17895.

27. Liu M, Uyanga VA, Cao X, Liu X, Lin H. Regulatory effects of the probiotic Clostridium butyricum on gut microbes, intestinal health, and growth performance of chickens. J Poult Sci. 2023;60:2023011.

28. Dixon B, Kilonzo-Nthenge A, Nzomo M, Bhogoju S, Nahashon S. Evaluation of selected bacteria and yeast for probiotic potential in poultry production. Microorganisms. 2022;10:676.

29. Igbafe J, Kilonzo-nthenge A, Nahashon SN, Mafiz AI, Nzomo M. Probiotics and antimicrobial effect of Lactiplantibacillus plantarum, Saccharomyces cerevisiae, and Bifidobacterium longum against common foodborne pathogens in poultry. Agriculture. 2020;10:368.

30. Kathayat D, Closs G Jr, Helmy YA, Deblais L, Srivastava V, Rajashekara G. In vitro and in vivo evaluation of Lacticaseibacillus rhamnosus GG and Bifidobacterium lactis Bb12 against avian pathogenic escherichia coli and identification of novel probiotic-derived bioactive peptides. Probiotics Antimicrob Proteins. 2022;14:1012-28.

31. Wang W, Dang G, Hao W, et al. Dietary supplementation of compound probiotics improves intestinal health by modulated microbiota and its SCFA products as alternatives to in-feed antibiotics. Probiotics Antimicrob Proteins. 2024;Epub ahead of print.

32. Dittoe DK, Olson EG, Ricke SC. Impact of the gastrointestinal microbiome and fermentation metabolites on broiler performance. Poult Sci. 2022;101:101786.

33. Liu X, Ma Z, Wang Y, Li L, Jia H, Zhang L. Compound probiotics can improve intestinal health by affecting the gut microbiota of broilers. J Anim Sci. 2023;101:skad388.

34. Naeem M, Bourassa D. Probiotics in poultry: unlocking productivity through microbiome modulation and gut health. Microorganisms. 2025;13:257.

35. Babot JD, Argañaraz-Martínez E, Quiroga M, Grande SM, Apella MC, Perez Chaia A. Protection of the intestinal epithelium of poultry against deleterious effects of dietary lectins by a multi-strain bacterial supplement. Res Vet Sci. 2021;135:27-35.

36. Yang L, Chen Y, Bai Q, et al. Protective effect of Bifidobacterium lactis JYBR-190 on intestinal mucosal damage in chicks infected with Salmonella pullorum. Front Vet Sci. 2022;9:879805.

37. Hu D, Wu X, Song P, et al. Dietary supplementation with multi-strain probiotic formulation (Bifidobacterium B8101, Lactobacillus L8603, Saccharomyces bayanus S9308, and Enterococcus SF9301), betaine or their combination promotes growth performance via improving intestinal development in broilers. Probiotics Antimicrob Proteins. 2024;Epub ahead of print.

38. Wu Y, Yang F, Jiang W, et al. Effects of compound probiotics on intestinal barrier function and caecum microbiota composition of broilers. Avian Pathol. 2022;51:465-75.

39. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446-50.

40. Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3:858-76.

41. Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Scientific opinion on the safety and efficacy of biomin C3 (Enterococcus faecium, Bifidobacterium animalis and Lactobacillus salivarius) for chickens for fattening. EFS2. 2012;10:2965.

42. Dev K, Akbar Mir N, Biswas A, Kannoujia J, Begum J, Kant R. Dietary Mannan-oligosaccharides potentiate the beneficial effects of Bifidobacterium bifidum in broiler chicken. Lett Appl Microbiol. 2020;71:520-30.

43. Agustono B, Warsito SH, Yunita MN, et al. Influence of microbiota inoculum as a substitute for antibiotic growth promoter during the initial laying phase on productivity performance, egg quality, and the morphology of reproductive organs in laying hens. Vet World. 2023;16:1461-7.

44. Nour MA, El-Hindawy MM, Qattan SYA, et al. Effect of graded levels of dietary Bacillus toyonensis and Bifidobacterium bifidum supplementation on growth, carcass traits and ileal histomorphometry and microbiota of growing quails. Saudi J Biol Sci. 2021;28:4532-41.

45. Abdel-Moneim AE, Elbaz AM, Khidr RE, Badri FB. Effect of in ovo inoculation of Bifidobacterium spp. on growth performance, thyroid activity, ileum histomorphometry, and microbial enumeration of broilers. Probiotics Antimicrob Proteins. 2020;12:873-82.

46. El-Moneim AEEA, El-Wardany I, Abu-Taleb AM, Wakwak MM, Ebeid TA, Saleh AA. Assessment of in ovo administration of Bifidobacterium bifidum and Bifidobacterium longum on performance, ileal histomorphometry, blood hematological, and biochemical parameters of broilers. Probiotics Antimicrob Proteins. 2020;12:439-50.

47. El-Sharkawy H, Tahoun A, Rizk AM, et al. Evaluation of Bifidobacteria and Lactobacillus probiotics as alternative therapy for Salmonella typhimurium infection in broiler chickens. Animals. 2020;10:1023.

48. Khan A, Kango N, Srivastava R. Impact of dietary probiotics on the immune and reproductive physiology of pubertal male Japanese quail (Coturnix coturnix japonica) administered at the onset of pre-puberty. Probiotics Antimicrob Proteins. 2025;17:1399-417.

49. Paul SS, Chatterjee RN, Raju MVLN, et al. Gut microbial composition differs extensively among indian native chicken breeds originated in different geographical locations and a commercial broiler line, but breed-specific, as well as across-breed core microbiomes, are found. Microorganisms. 2021;9:391.

50. Nour MA, El-Hindawy MM, Abou-Kassem DE, et al. Productive performance, fertility and hatchability, blood indices and gut microbial load in laying quails as affected by two types of probiotic bacteria. Saudi J Biol Sci. 2021;28:6544-55.

51. Zou Y, Liang N, Zhang X, Han C, Nan X. Functional differentiation related to decomposing complex carbohydrates of intestinal microbes between two wild zokor species based on 16SrRNA sequences. BMC Vet Res. 2021;17:216.

52. Zuo ZH, Shang BJ, Shao YC, Li WY, Sun JS. Screening of intestinal probiotics and the effects of feeding probiotics on the growth, immune, digestive enzyme activity and intestinal flora of Litopenaeus vannamei. Fish Shellfish Immunol. 2019;86:160-8.

53. Tsvetikova SA, Koshel EI. Microbiota and cancer: host cellular mechanisms activated by gut microbial metabolites. Int J Med Microbiol. 2020;310:151425.

54. Li Q, Wan G, Peng C, et al. Effect of probiotic supplementation on growth performance, intestinal morphology, barrier integrity, and inflammatory response in broilers subjected to cyclic heat stress. Anim Sci J. 2020;91:e13433.

55. van der Klein SAS, Arora SS, Haldar S, Dhara AK, Gibbs K. A dual strain probiotic administered via the waterline beneficially modulates the ileal and cecal microbiome, sIgA and acute phase protein levels, and growth performance of broilers during a dysbacteriosis challenge. Poult Sci. 2024;103:104462.

56. Rowland MC, Teague KD, Forga AJ, et al. Evaluation of the effect of in ovo applied bifidobacteria and lactic acid bacteria on enteric colonization by hatchery-associated opportunistic pathogens and early performance in broiler chickens. Poultry. 2025;4:15.

57. Stęczny K, Kokoszyński D. Effect of probiotic preparations (EM) on productive characteristics, carcass composition, and microbial contamination in a commercial broiler chicken farm. Anim Biotechnol. 2021;32:758-65.

58. Brugaletta G, De Cesare A, Zampiga M, et al. Effects of alternative administration programs of a synbiotic supplement on broiler performance, foot pad dermatitis, caecal microbiota, and blood metabolites. Animals. 2020;10:522.

59. Chen M, Stern NJ, Bailey JS, Cox NA. Administering mucosal competitive exclusion flora for control of salmonellae. J Appl Poult Res. 1998;7:384-91.

60. Yaqoob MU, Wang G, Wang M. An updated review on probiotics as an alternative of antibiotics in poultry - a review. Anim Biosci. 2022;35:1109-20.

61. Kabir SL. Dietary probiotics in poultry: a game-changer for growth, immunity, and microbiota balance. Asian J Med Biol Res. 2025;11:1-4.

62. Drauch V, Ghanbari M, Reisinger N, Mohnl M, Hess C, Hess M. Differential effects of synbiotic delivery route (feed, water, combined) in broilers challenged with Salmonella infantis. Poult Sci. 2025;104:104890.

63. Willemsen H, Debonne M, Swennen Q, et al. Delay in feed access and spread of hatch: importance of early nutrition. World's Poult Sci J. 2010;66:177-88.

64. Halder N, Sunder J, De AK, Bhattacharya D, Joardar SN. Probiotics in poultry: a comprehensive review. JoBAZ. 2024;85:379.

65. Ren Y, Muyyarikkandy MS, Gao M, et al. Sustained in-ovo and in-feed probiotic supplementation promotes embryo development and post-hatch performance in broilers. Poult Sci. 2025;104:105395.

66. Kiarie EG, Mills A. Role of feed processing on gut health and function in pigs and poultry: conundrum of optimal particle size and hydrothermal regimens. Front Vet Sci. 2019;6:19.

67. Gyawali I. A review on enhancing gut health in poultry: probiotic stability, stress management, and encapsulation strategies. Poult Sci J. 2024;12:145.

68. Siwek M, Slawinska A, Stadnicka K, Bogucka J, Dunislawska A, Bednarczyk M. Prebiotics and synbiotics - in ovo delivery for improved lifespan condition in chicken. BMC Vet Res. 2018;14:402.

69. Wishna-Kadawarage RN, Połtowicz K, Dankowiakowska A, Hickey RM, Siwek M. Prophybiotics for in-ovo stimulation; validation of effects on gut health and production of broiler chickens. Poult Sci. 2024;103:103512.

70. Muyyarikkandy MS, Mathew E, Kuttappan D, Amalaradjou MA. Research Note: in ovo and in-feed probiotic supplementation improves layer embryo and pullet growth. Poult Sci. 2023;102:103092.

71. Abdulqader AF, Aygun A, Maman AH, Olgun O. The effect of in-ovo injection of Lactobacilla Rhamnosus on hatching traits and growth parameters of quails. Selcuk J Agr Food Sci. 2018;32:174-8.

72. Gao M, Ren Y, Lu S, Reddyvari R, Venkitanarayanan K, Amalaradjou MA. In ovo probiotic supplementation supports hatchability and improves hatchling quality in broilers. Poult Sci. 2024;103:103624.

73. Triplett MD, Zhai W, Peebles ED, McDaniel CD, Kiess AS. Investigating commercial in ovo technology as a strategy for introducing probiotic bacteria to broiler embryos. Poult Sci. 2018;97:658-66.

74. White MB. In ovo and feed application of probiotics or synbiotics and response of broiler chicks to post-hatch necrotic enteritis. Available from: https://vtechworks.lib.vt.edu/items/9b83a740-d64f-4b86-894c-7600f7ee6f56. [Last accessed on 20 Aug 2025].

75. Villumsen KR, Sandvang D, Vestergård G, et al. Effects of a novel, non-invasive pre-hatch application of probiotic for broilers on development of cecum microbiota and production performance. Anim Microbiome. 2023;5:41.

76. Kayal A, Yu SJ, Van TTH, Bajagai YS, Stanley D, Barekatain R. Effect of early gut microbiota intervention using pre-designed poultry microbiota substitute on broiler health and performance. Anim Prod Sci. 2025;65:AN24354.

77. Olnood CG, Beski SSM, Iji PA, Choct M. Delivery routes for probiotics: effects on broiler performance, intestinal morphology and gut microflora. Anim Nutr. 2015;1:192-202.

78. Hernandez-Patlan D, Solis-Cruz B, Hargis BM, Tellez G. The use of probiotics in poultry production for the control of bacterial infections and aflatoxins. In: Franco-Robles E, Ramírez Emiliano J, Editors. Prebiotics and probiotics - potential benefits in nutrition and health. London: IntechOpen; 2019. pp. 1-21.

79. Simpson PJ, Stanton C, Fitzgerald GF, Ross RP. Intrinsic tolerance of Bifidobacterium species to heat and oxygen and survival following spray drying and storage. J Appl Microbiol. 2005;99:493-501.

80. Arsi K, Donoghue AM, Woo-Ming A, Blore PJ, Donoghue DJ. Intracloacal inoculation, an effective screening method for determining the efficacy of probiotic bacterial isolates against Campylobacter colonization in broiler chickens. J Food Prot. 2015;78:209-13.

81. Keerqin C, Morgan N, Wu S, Svihus B, Choct M. Reintroduction of microflora from necrotic enteritis-resistant chickens reduces gross lesions and improves performance of necrotic enteritis-challenged broilers. J Appl Poult Res. 2017;26:449-57.

82. Alqazlan N, Astill J, Taha-Abdelaziz K, Nagy É, Bridle B, Sharif S. Probiotic Lactobacilli enhance immunogenicity of an inactivated H9N2 influenza virus vaccine in chickens. Viral Immunol. 2021;34:86-95.

83. Baxter M, Sylvester J, St-Pierre NR, Graham BDM. Methods of applying a product to poultry via cloacal drinking. US-2023190436-A1, 2023.

84. Papouskova A, Rychlik I, Harustiakova D, Cizek A. Research note: a mixture of Bacteroides spp. and other probiotic intestinal anaerobes reduces colonization by pathogenic E. coli strain O78:H4-ST117 in newly hatched chickens. Poult Sci. 2023;102:102529.

85. Wyszyńska AK, Godlewska R. Lactic acid bacteria - a promising tool for controlling chicken Campylobacter infection. Front Microbiol. 2021;12:703441.

86. D’Amico V, Cavaliere M, Ivone M, et al. Microencapsulation of probiotics for enhanced stability and health benefits in dairy functional foods: a focus on pasta filata cheese. Pharmaceutics. 2025;17:185.

87. Sibanda T, Marole TA, Thomashoff UL, Thantsha MS, Buys EM. Bifidobacterium species viability in dairy-based probiotic foods: challenges and innovative approaches for accurate viability determination and monitoring of probiotic functionality. Front Microbiol. 2024;15:1327010.

88. Frakolaki G, Giannou V, Kekos D, Tzia C. A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Crit Rev Food Sci Nutr. 2021;61:1515-36.

89. Kiprono S, Wambani J, Rono J, Langat V, Shi Z, et al. Microencapsulation of probiotics and their applications: a review of the literature. ES Food Agrofor. 2024;17:1106.

90. Schofield T, Kavanagh J, Li Z, et al. Microencapsulation of Bifidobacterium lactis and Lactobacillus plantarum within a novel polysaccharide-based core-shell formulation: improving probiotic viability and mucoadhesion. ACS Biomater Sci Eng. 2024;10:6903-14.

91. Vivek K, Mishra S, Pradhan RC, et al. A comprehensive review on microencapsulation of probiotics: technology, carriers and current trends. Appl Food Res. 2023;3:100248.

92. Pyclik M, Srutkova D, Schwarzer M, Górska S. Bifidobacteria cell wall-derived exo-polysaccharides, lipoteichoic acids, peptidoglycans, polar lipids and proteins - their chemical structure and biological attributes. Int J Biol Macromol. 2020;147:333-49.

93. López P, Monteserín DC, Gueimonde M, et al. Exopolysaccharide-producing Bifidobacterium strains elicit different in vitro responses upon interaction with human cells. Food Res Int. 2012;46:99-107.

94. Fanning S, Hall LJ, Cronin M, et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci U S A. 2012;109:2108-13.

95. Kšonžeková P, Bystrický P, Vlčková S, et al. Exopolysaccharides of Lactobacillus reuteri: their influence on adherence of E. coli to epithelial cells and inflammatory response. Carbohydr Polym. 2016;141:10-9.

96. Nilsen NJ, Deininger S, Nonstad U, et al. Cellular trafficking of lipoteichoic acid and Toll-like receptor 2 in relation to signaling: role of CD14 and CD36. J Leukoc Biol. 2008;84:280-91.

97. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783-801.

98. Jang JH, Shin HW, Lee JM, Lee HW, Kim EC, Park SH. An overview of pathogen recognition receptors for innate immunity in dental pulp. Mediators Inflamm. 2015;2015:794143.

99. Yoshida Y, Seki T, Matsunaka H, Watanabe T, Shindo M, et al. Clinical effects of probiotic Bifidobacterium breve supplementation in adult patients with atopic dermatitis. Yonago Acta Med. 2010;53:37-45. Available from: . [Last accessed on 20 Aug 2025].

100. Zhu J, Zhao L, Guo H, Jiang L, Ren F. Immunomodulatory effects of novel bifidobacterium and lactobacillus strains on murine macrophage cells. Afr J Microbiol Res. 2011;5:8-15.

101. Wang LS, Zhu HM, Zhou DY, Wang YL, Zhang WD. Influence of whole peptidoglycan of bifidobacterium on cytotoxic effectors produced by mouse peritoneal macrophages. World J Gastroenterol. 2001;7:440-3.

102. Tejada-Simon MV, Pestka JJ. Proinflammatory cytokine and nitric oxide induction in murine macrophages by cell wall and cytoplasmic extracts of lactic acid bacteria. J Food Prot. 1999;62:1435-44.

103. Ivanov D, Emonet C, Foata F, et al. A serpin from the gut bacterium Bifidobacterium longum inhibits eukaryotic elastase-like serine proteases. J Biol Chem. 2006;281:17246-52.

104. Foroni E, Serafini F, Amidani D, et al. Genetic analysis and morphological identification of pilus-like structures in members of the genus Bifidobacterium. Microb Cell Fact. 2011;10 Suppl 1:S16.

105. Contreras-lópez G, Carrillo-lópez LM, Vargas-bello-pérez E, García-galicia IA. Microencapsulation of feed additives with potential in livestock and poultry production: a systematic review. Chil j agric anim sci. 2024;40:229-49.

106. Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14:491-502.

107. Ntsefong GN, Lodygin A, Evdokimov I, et al. Polymer selection for microencapsulation of probiotics: impact on viability, stability, and delivery in functional foods for improved manufacturing and product development in the food industry. Potr S J F Sci. 2023;17:712-27.

108. Nogueira MB, Massaut KB, Vitola HRS, Siqueira MFF, da Silva WP, Fiorentini ÂM. Antagonistic activity of Lactobacillus spp. and Bifidobacterium spp. against cariogenic Streptococcus mutans in vitro and viability when added to chewing gum during storage. Braz J Microbiol. 2023;54:2197-204.

109. Verruck S, Silva KJ, de Oliveira Santeli H, et al. Bifidobacterium animalis ssp. lactis BB-12 enumeration by quantitative PCR assay in microcapsules with full-fat goat milk and inulin-type fructans. Food Res Int. 2020;133:109131.

110. Arslan-Tontul S, Erbas M, Gorgulu A. The use of probiotic-loaded single- and double-layered microcapsules in cake production. Probiotics Antimicrob Proteins. 2019;11:840-9.

111. El-Sayed HS, Youssef K, Hashim AF. Stirred yogurt as a delivery matrix for freeze-dried microcapsules of synbiotic EVOO nanoemulsion and nanocomposite. Front Microbiol. 2022;13:893053.

112. Zhang Z, Gu M, You X, Sela DA, Xiao H, Mcclements DJ. Encapsulation of bifidobacterium in alginate microgels improves viability and targeted gut release. Food Hydrocolloids. 2021;116:106634.

113. Azam M, Saeed M, Yasmin I, et al. Microencapsulation and invitro characterization of Bifidobacterium animalis for improved survival. Food Measure. 2021;15:2591-600.

114. Khan WA, Butt MS, Yasmin I, Wadood SA, Mahmood A, Gad HA. Protein-polysaccharide based double network microbeads improves stability of Bifidobacterium infantis ATCC 15697 in a gastro-Intestinal tract model (TIM-1). Int J Pharm. 2024;652:123804.

115. Mousa AH, Korma SA, Ali AH, et al. Microencapsulation of Bifidobacterium bifidum F-35 via modulation of emulsifying technique and its mechanical effects on the rheological stability of set-yogurt. J Food Sci Technol. 2023;60:2968-77.

116. Moghanjougi Z, Rezazadeh Bari M, Alizadeh Khaledabad M, Amiri S, Almasi H. Microencapsulation of Lactobacillus acidophilus LA-5 and Bifidobacterium animalis BB-12 in pectin and sodium alginate: a comparative study on viability, stability, and structure. Food Sci Nutr. 2021;9:5103-11.

117. Lohrasbi V, Abdi M, Asadi A, et al. The effect of improved formulation of chitosan-alginate microcapsules of Bifidobacteria on serum lipid profiles in mice. Microb Pathog. 2020;149:104585.

118. Huang Y, Lu Z, Liu F, et al. Osteopontin associated Bifidobacterium bifidum microencapsulation modulates infant fecal fermentation and gut microbiota development. Food Res Int. 2024;197:115211.

119. Huang X, Liu R, Wang J, et al. Preparation and synbiotic interaction mechanism of microcapsules of Bifidobacterium animalis F1-7 and human milk oligosaccharides (HMO). Int J Biol Macromol. 2024;259:129152.

120. Penhasi A, Reuveni A, Baluashvili I. Microencapsulation may preserve the viability of probiotic bacteria during a baking process and digestion: a case study with Bifidobacterium animalis subsp. lactis in Bread. Curr Microbiol. 2021;78:576-89.

121. Babot JD, Lorenzo Pisarello MJ, Obregozo M, Argañaraz-martínez E, Apella MC, Perez Chaia A. Soy protein improves the shelf life of a spray-dried probiotic for poultry. Arab J Sci Eng..

122. Sin PY, Tan SH, Farida Asras MF, Karmawan LU. From preparation to product: factors influencing probiotic viability in spray drying. Curr Sci Technol. 2024;4:22-35.

123. Shokri Z, Fazeli MR, Ardjmand M, Mousavi SM, Gilani K. Factors affecting viability of Bifidobacterium bifidum during spray drying. Daru. 2015;23:7.

124. Lu Z, Imlay JA. When anaerobes encounter oxygen: mechanisms of oxygen toxicity, tolerance and defence. Nat Rev Microbiol. 2021;19:774-85.

125. Jiang T, Lu W, Cui S, Zhang H, Zhao J. Characteristic analysis of different microencapsulated Bifidobacterium. Sci Technol Food Industry. 2021;42:128-34.

126. Liu SL, Chen CY, Chen YS. Characteristic properties of spray-drying Bifidobacterium adolescentis microcapsules with biosurfactant. J Biosci Bioeng. 2022;133:250-7.

127. Burns P, Alard J, Hrdỳ J, et al. Spray-drying process preserves the protective capacity of a breast milk-derived Bifidobacterium lactis strain on acute and chronic colitis in mice. Sci Rep. 2017;7:43211.

128. Muthusany N, Natarajan A, Kumerasan G, et al. Viability of spray dried probiotics in crumble feed during storage. Int J Curr Microbiol App Sci. 2020;9:1389-96.

129. Kakuda L, Jaramillo Y, Niño-Arias FC, et al. Process development for the spray-drying of probiotic bacteria and evaluation of the product quality. J Vis Exp. 2023.

130. Archacka M, Celińska E, Białas W. Techno-economic analysis for probiotics preparation production using optimized corn flour medium and spray-drying protective blends. Food Bioprod. Process. 2020;123:354-66.

131. Pupa P, Apiwatsiri P, Sirichokchatchawan W, et al. The efficacy of three double-microencapsulation methods for preservation of probiotic bacteria. Sci Rep. 2021;11:13753.

132. Gullifa G, Risoluti R, Mazzoni C, et al. Microencapsulation by a spray drying approach to produce innovative probiotics-based products extending the shelf-life in non-refrigerated conditions. Molecules. 2023;28:860.

133. Acosta-Piantini E, Villarán MC, Martínez Á, Lombraña JI. Examining the effect of freezing temperatures on the survival rate of micro-encapsulated probiotic Lactobacillus acidophilus LA5 using the flash freeze-drying (FFD) strategy. Microorganisms. 2024;12:506.

134. Tanimomo J, Delcenserie V, Taminiau B, Daube G, Saint-hubert C, Durieux A. Growth and freeze-drying optimization of Bifidobacterium crudilactis. Food Nutr Sci. 2016;07:616-26.

135. Haindl R, Neumayr A, Frey A, Kulozik U. Impact of cultivation strategy, freeze-drying process, and storage conditions on survival, membrane integrity, and inactivation kinetics of Bifidobacterium longum. Folia Microbiol. 2020;65:1039-50.

136. Buahom J, Siripornadulsil S, Sukon P, Sooksawat T, Siripornadulsil W. Survivability of freeze- and spray-dried probiotics and their effects on the growth and health performance of broilers. Vet World. 2023;16:1849-65.

137. Oxley JD, Castilla-gutierrez C, Collazos SR, et al. Comparison of energy consumption and probiotic stability with pilot scale drying processes. LWT. 2024;211:116937.

138. Kourkoutas Y, Sipsas V, Papavasiliou G, Koutinas AA. An economic evaluation of freeze-dried kefir starter culture production using whey. J Dairy Sci. 2007;90:2175-80.

139. Silva R, Pimentel TC, Eustáquio de Matos Junior F, et al. Microencapsulation with spray-chilling as an innovative strategy for probiotic low sodium requeijão cremoso processed cheese processing. Food Bioscience. 2022;46:101517.

140. Bampi GB, Backes GT, Cansian RL, et al. Spray chilling microencapsulation of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis. ;9:1422-8.

141. Favaro-Trindade CS, de Matos Junior FE, Okuro PK, et al. Encapsulation of active pharmaceutical ingredients in lipid micro/nanoparticles for oral administration by spray-cooling. Pharmaceutics. 2021;13:1186.

142. Arslan-tontul S, Erbas M. Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT. 2017;81:160-9.

143. Champagne CP, Fustier P. Microencapsulation for the improved delivery of bioactive compounds into foods. Curr Opin Biotechnol. 2007;18:184-90.

144. Mühlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery--drug release and release mechanism. Eur J Pharm Biopharm. 1998;45:149-55.

145. Figueiredo JA, Silva CRP, Souza Oliveira MF, et al. Microencapsulation by spray chilling in the food industry: Opportunities, challenges, and innovations. Trends Food Sci Technol. 2022;120:274-87.

146. Mahapatra A, Patil S, Dhakane-Lad J. Spray chilling/cooling of nutraceutical ingredients. In: Rajakumari R, Thomas S, Editors. Handbook of Nutraceuticals. Cham: Springer; 2024. pp 1-21.

147. Pedroso DL, Dogenski M, Thomazini M, Heinemann RJ, Favaro-Trindade CS. Microencapsulation of Bifidobacterium animalis subsp. lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology. Braz J Microbiol. 2013;44:777-83.

148. Homayouni-Rad A, Mortazavian AM, Pourjafar H, Moghadam SK. Extrusion and co-extrusion: a technology in probiotic encapsulation with alternative materials. Curr Pharm Biotechnol. 2024;25:1986-2000.

149. Lee Y, Ji YR, Lee S, Choi MJ, Cho Y. Microencapsulation of probiotic Lactobacillus acidophilus KBL409 by extrusion technology to enhance survival under simulated intestinal and freeze-drying conditions. J Microbiol Biotechnol. 2019;29:721-30.

150. Frakolaki G, Kekes T, Lympaki F, Giannou V, Tzia C. Use of encapsulated Bifidobacterium animalis subsp. lactis. ;45:e13792.

151. Rojas-Muñoz YV, Santagapita PR, Quintanilla-Carvajal MX. Probiotic encapsulation: bead design improves bacterial performance during in vitro digestion. Polymers. 2023;15:4296.

152. Singh S, Gupta R, Chawla S, et al. Natural sources and encapsulating materials for probiotics delivery systems: recent applications and challenges in functional food development. Front Nutr. 2022;9:971784.

153. Shi Z, Wu J, Wang X, et al. Development of Pickering water-in-oil emulsions using a dual stabilization of candelilla wax and acylated EGCG derivatives to enhance the survival of probiotics (Lactobacillus plantarum) powder. Food Funct. 2024;15:11141-57.

154. Koh WY, Lim XX, Tan T, Kobun R, Rasti B. Encapsulated probiotics: potential techniques and coating materials for non-dairy food applications. Applied Sciences. 2022;12:10005.

155. de Oca-ávalos JMM, Candal RJ, Herrera ML. Nanoemulsions: stability and physical properties. Curr Opin Food Sci. 2017;16:1-6.

156. Chen L, Ao F, Ge X, Shen W. Food-grade pickering emulsions: preparation, stabilization and applications. Molecules. 2020;25:3202.

157. Haji F, Cheon J, Baek J, Wang Q, Tam KC. Application of pickering emulsions in probiotic encapsulation- a review. Curr Res Food Sci. 2022;5:1603-15.

158. Talwalkar A, Kailasapathy K. Effect of microencapsulation on oxygen toxicity in probiotic bacteria - ProQuest. Aust J Dairy Technol. 2003;58:36.

159. Gani A, Akther G, Ashwar BA, Jhan F, Shah A. Resistant starch as a novel carrier for delivery of probiotics exploring effectiveness of two different strategies of encapsulation. Starch Stärke. 2023;75:2100285.

160. Babot JD, Argañaraz-Martínez E, Apella MC, Perez Chaia A. Microencapsulation of probiotics with soy protein isolate and alginate for the poultry industry. Food Bioproc Tech. 2023;16:1478-87.

161. Dantanarayana SK, Bogahawatta LBGS, Jayabhanu APNE, et al. Encapsulation techniques for probiotic non-dairy products: a comprehensive review. Global Scientific Journals. 2024;12:518-63.

162. Farahmand A, Ghorani B, Emadzadeh B, et al. Millifluidic-assisted ionic gelation technique for encapsulation of probiotics in double-layered polysaccharide structure. Food Res Int. 2022;160:111699.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/