REFERENCES
1. Du, P.; Wei, Y.; Liang, Y.; et al. Near-infrared-responsive rare earth nanoparticles for optical imaging and wireless phototherapy. Adv. Sci. 2024, 11, e2305308.
2. Luo, F.; Zhao, L.; Zhang, Q.; Yuan, Y.; Cai, J. Efficacy of nebulized GM-CSF inhalation in preventing oral mucositis in patients undergoing hematopoietic stem cell transplantation: a retrospective study. Heliyon 2024, 10, e37721.
3. Amrollahi, P.; Zheng, W.; Monk, C.; Li, C. Z.; Hu, T. Y. Nanoplasmonic sensor approaches for sensitive detection of disease-associated exosomes. ACS. Appl. Bio. Mater. 2021, 4, 6589-603.
4. Settleman, J.; Neto, J. M. F.; Bernards, R. Thinking differently about cancer treatment regimens. Cancer. Discov. 2021, 11, 1016-23.
5. Lee, L. C.; Lo, K. K. Leveraging the photofunctions of transition metal complexes for the design of innovative phototherapeutics. Small. Methods. 2024, 8, e2400563.
6. Wahnou, H.; El Kebbaj, R.; Liagre, B.; Sol, V.; Limami, Y.; Duval, R. E. Curcumin-based nanoparticles: advancements and challenges in tumor therapy. Pharmaceutics 2025, 17, 114.
7. Zhan, Y.; Zhou, Z.; Zhu, Z.; et al. Exosome-transmitted LUCAT1 promotes stemness transformation and chemoresistance in bladder cancer by binding to IGF2BP2. J. Exp. Clin. Cancer. Res. 2025, 44, 80.
8. Liu, X.; Zhang, J.; Xia, L.; et al. LAMC3 interference reduces drug resistance of carboplatin-resistant ovarian cancer cells. Sci. Rep. 2025, 15, 20399.
9. Menon, A. P.; Villanueva, H.; Meraviglia-Crivelli, D.; et al. CD3 aptamers promote expansion and persistence of tumor-reactive T cells for adoptive T cell therapy in cancer. Mol. Ther. Nucleic. Acids. 2024, 35, 102198.
10. Kim, K. Hybrid systems of gels and nanoparticles for cancer therapy: advances in multifunctional therapeutic platforms. Gels 2025, 11, 170.
11. Fatima, S.; Shahid, H.; Zafar, S.; Arooj, I.; Ijaz, S.; Elahi, A. Ocimum basilicum seed-mediated green synthesis of silver nanoparticles: characterization and evaluation of biological properties. Discov. Nano. 2024, 19, 172.
12. Kumar, A.; Tan, A.; Wong, J.; et al. Nanotechnology for neuroscience: promising approaches for diagnostics, therapeutics and brain activity mapping. Adv. Funct. Mater. 2017, 27, 1700489.
13. Ranke, D.; Lee, I.; Gershanok, S. A.; et al. Multifunctional nanomaterials for advancing neural interfaces: recording, stimulation, and beyond. ACC. Chem. Res. 2024, 57, 1803-14.
14. Wang, C.; Xiao, J.; Hu, X.; et al. Liquid core nanoparticle with high deformability enables efficient penetration across biological barriers. Adv. Healthc. Mater. 2023, 12, e2201889.
15. Hansen, M. E.; Ibrahim, Y.; Desai, T. A.; Koval, M. Nanostructure-mediated transport of therapeutics through epithelial barriers. Int. J. Mol. Sci. 2024, 25, 7098.
16. Ahmadzadeh, R.; Taheri, S. A.; Mohammadi, N.; et al. Biologically based strategies for overcoming in vivo barriers with functional nano-delivery systems. J. Biochem. Mol. Toxicol. 2024, 38, e23782.
17. Zhou, Y. T.; Cheng, K.; Liu, B.; et al. Recent progress of nano-drugs in neutron capture therapy. Theranostics 2024, 14, 3193-212.
18. Zurletti, B.; Andreana, I.; Salaroglio, I. C.; et al. Tailoring the composition of HA/PEG mixed nano-assemblies for anticancer drug delivery. Molecules 2025, 30, 1349.
19. Yu, H. J.; Liu, J. H.; Liu, W.; et al. Metal-based nanomedicines for cancer theranostics. Mil. Med. Res. 2025, 12, 41.
20. Jayapalan, A.; Tukur, F.; Azami, M.; Liu, M.; Wei, J. Multifunctional core-shell cobalt oxide @ carbon nanodot hybrid conjugates for imaging and targeting A549 cells. ACS. Appl. Bio. Mater. 2025, 8, 4981-94.
21. Cedrún-Morales, M.; Ceballos, M.; Soprano, E.; et al. Light-responsive nanoantennas integrated into nanoscale metal-organic frameworks for photothermal drug delivery. Small. Sci. 2024, 4, 2400088.
22. Consoli, G. M. L.; Maugeri, L.; Forte, G.; et al. Red light-triggerable nanohybrids of graphene oxide, gold nanoparticles and thermo-responsive polymers for combined photothermia and drug release effects. J. Mater. Chem. B. 2024, 12, 952-61.
23. Han, Y.; Peng, C.; Qiao, Z.; et al. Lipoic acid-modified epirubicin liposomal system for tumor-targeted drug delivery and cardiotoxicity reduction. Biomater. Adv. 2026, 178, 214439.
24. Wu, Y.; Sun, L.; Zhang, X.; et al. Unnatural triggers converted from tetrazine-attached sialic acid for activation of optoacoustic imaging-guided cancer theranostics. Angew. Chem. Int. Ed. 2025, 64, e202503850.
25. Vento, F.; Privitera, A.; Caruso, G.; Nicosia, A. A silibinin-poly(ε-caprolactone) conjugate as an enhanced anticancer agent. Macromol. Biosci. 2025, 25, e2400510.
26. Hou, J.; Yang, J.; Zheng, X.; Wang, M.; Liu, Y.; Yu, D. G. A nanofiber-based drug depot with high drug loading for sustained release. Int. J. Pharm. 2020, 583, 119397.
27. Fu, T.; Duan, B.; Sun, P.; et al. Innovative applications of silicon dioxide nanoparticles for targeted liver cancer treatment. Front. Bioeng. Biotechnol. 2025, 13, 1595772.
28. Gonsalves, A.; Sorkhdini, P.; Bazinet, J.; et al. Development and characterization of lung surfactant-coated polymer nanoparticles for pulmonary drug delivery. Biomater. Adv. 2023, 150, 213430.
29. Jia, R.; He, Y.; Liang, J.; et al. Preparation of biocompatibility coating on magnesium alloy surface by sodium alginate and carboxymethyl chitosan hydrogel. iScience 2024, 27, 109197.
30. Wang, J.; Li, H.; Su, Q.; et al. Living photosynthetic micro/nano-platforms: engineering unicellular algae for biomedical applications. Bioact. Mater. 2025, 51, 575-97.
31. Zhong, Y.; Meng, F.; Deng, C.; Zhong, Z. Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules 2014, 15, 1955-69.
32. Gralewska, P.; Gajek, A.; Marczak, A.; Rogalska, A. Targeted nanocarrier-based drug delivery strategies for improving the therapeutic efficacy of PARP inhibitors against ovarian cancer. Int. J. Mol. Sci. 2024, 25, 8304.
33. Spada, A.; Gerber-Lemaire, S. Surface functionalization of nanocarriers with anti-EGFR ligands for cancer active targeting. Nanomaterials 2025, 15, 158.
34. Kuna, K.; Baddam, S. R.; Kalagara, S.; Akkiraju, P. C.; Tade, R. S.; Enaganti, S. Emerging natural polymer-based architectured nanotherapeutics for the treatment of cancer. Int. J. Biol. Macromol. 2024, 262, 129434.
35. Chakraborty, D. D.; Chakraborty, P.; Mondal, A. An insight into cancer nanomedicine based on polysaccharides. Int. J. Biol. Macromol. 2025, 290, 138678.
36. Rathore, S. S.; Leno Jenita, J. J.; Dotherabandi, M. A systematic review on hyaluronic acid coated nanoparticles: recent strategy in breast cancer management. J. Biomater. Sci. Polym. Ed. 2025, 36, 605-46.
37. Mogoşanu, G. D.; Grumezescu, A. M. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm. 2014, 463, 127-36.
38. Garg, U.; Jain, N.; Kaul, S.; Nagaich, U. Role of albumin as a targeted drug carrier in the management of rheumatoid arthritis: a comprehensive review. Mol. Pharm. 2023, 20, 5345-58.
39. Mondal, A.; Nayak, A. K.; Chakraborty, P.; Banerjee, S.; Nandy, B. C. Natural polymeric nanobiocomposites for anti-cancer drug delivery therapeutics: a recent update. Pharmaceutics 2023, 15, 2064.
40. Natarajan, V. Alleviation of tumor invasion by the development of natural polymerbased low-risk chemotherapeutic systems - review on the malignant carcinoma treatments. Curr. Drug. Delivery. 2024, 22, 1240-64.
41. Wong, K. H.; Lu, A.; Chen, X.; Yang, Z. Natural ingredient-based polymeric nanoparticles for cancer treatment. Molecules 2020, 25, 3620.
42. Babu, T.; Muthuramalingam, R. P. K.; Chng, W. H.; et al. Multitargeting Pt(IV) derivatives of cisplatin or oxaliplatin inhibit tumor growth in mice without inducing neuropathic pain. J. Med. Chem. 2025, 68, 1608-18.
43. Nguyen, V. N.; Nguyen, M. V.; Pham Thi, H.; Vu, A. T.; Nguyen, T. X. Recent advances in near-infrared organic photosensitizers for photodynamic cancer therapy. Biomater. Sci. 2025, 13, 1179-88.
44. Peng, S.; Fu, H.; Li, R.; et al. A new direction in periodontitis treatment: biomaterial-mediated macrophage immunotherapy. J. Nanobiotechnol. 2024, 22, 359.
45. Arif, U.; Haider, S.; Haider, A.; et al. Biocompatible polymers and their potential biomedical applications: a review. Curr. Pharm. Des. 2019, 25, 3608-19.
46. Koide, H. Design of functional nanoparticles for intractable disease therapy. Biol. Pharm. Bull. 2021, 44, 1-6.
47. Zhang, M.; Luo, X.; Jiang, M.; et al. The development and toxicological evaluation of novel polyurethane materials. Toxics 2025, 13, 512.
48. Shi, Y.; Fan, G.; Yang, E.; et al. Enhanced efficacy of immune checkpoint inhibitors by folate-targeted multifunctional drug through synergistic therapy inducing ferroptosis and immunogenic cell death in bladder cancer. Mater. Today. Bio. 2025, 31, 101584.
49. Qiao, Y.; Zhan, C.; Wang, C.; et al. MMP-2 sensitive poly(malic acid) micelles stabilized by π-π stacking enable high drug loading capacity. J. Mater. Chem. B. 2020, 8, 8527-35.
50. Qiu, C.; Wu, Y.; Guo, Q.; et al. Preparation and application of calcium phosphate nanocarriers in drug delivery. Mater. Today. Bio. 2022, 17, 100501.
51. Fan, W. L.; Huang, S. Y.; Yang, X. J.; Bintang Ilhami, F.; Chen, J. K.; Cheng, C. C. Hydrogen-bonded cytosine-endowed supramolecular polymeric nanogels: highly efficient cancer cell targeting and enhanced therapeutic efficacy. J. Colloid. Interface. Sci. 2024, 665, 329-44.
52. Liu, X.; Li, J.; Liu, Y.; Zhou, L. Achieving enhanced multifunctional performance for structural composite supercapacitors by reinforcing interfaces with polymer coating. J. Colloid. Interface. Sci. 2024, 665, 603-12.
53. Long, J.; Zhou, G.; Yu, X.; et al. Harnessing chemical functionality of xylan hemicellulose towards carbohydrate polymer-based pH/magnetic dual-responsive nanocomposite hydrogel for drug delivery. Carbohydr. Polym. 2024, 343, 122461.
54. Liao, W. C.; Riutin, M.; Parak, W. J.; Willner, I. Programmed pH-responsive microcapsules for the controlled release of CdSe/ZnS quantum dots. ACS. Nano. 2016, 10, 8683-9.
55. Shang, L.; Xie, Q.; Yang, C.; Kong, L.; Zhang, Z. Extracellular vesicles facilitate the transportation of nanoparticles within and between cells for enhanced tumor therapy. ACS. Appl. Mater. Interfaces. 2023, 15, 42378-94.
56. Yang, T.; Guo, L. Advancing gastric cancer treatment: nanotechnology innovations and future prospects. Cell. Biol. Toxicol. 2024, 40, 101.
57. Alkhawaja, B.; Abuarqoub, D.; Al-Natour, M.; et al. Facile rebridging conjugation approach to attain monoclonal antibody-targeted nanoparticles with enhanced antigen binding and payload delivery. Bioconjugate. Chem. 2024, 35, 1491-502.
58. Duarte, J. A.; Gomes, E. R.; De Barros, A. L. B.; Leite, E. A. Co-encapsulation of simvastatin and doxorubicin into pH-sensitive liposomes enhances antitumoral activity in breast cancer cell lines. Pharmaceutics 2023, 15, 369.
59. Li, Z.; Shen, L.; Ma, A.; et al. Pegloticase co-administered with high MW polyethylene glycol effectively reduces PEG-immunogenicity and restores prolonged circulation in mouse. Acta. Biomater. 2023, 170, 250-9.
60. Rao, L.; Bu, L. L.; Xu, J. H.; et al. Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance. Small 2015, 11, 6225-36.
61. Li, Y.; Sun, H.; Cao, D.; et al. Overcoming biological barriers in cancer therapy: cell membrane-based nanocarrier strategies for precision delivery. Int. J. Nanomedicine. 2025, 20, 3113-45.
62. Feng, C.; Tan, P.; Nie, G.; Zhu, M. Biomimetic and bioinspired nano-platforms for cancer vaccine development. Exploration 2023, 3, 20210263.
63. Yuan, G.; Liu, Z.; Wang, W.; et al. Multifunctional nanoplatforms application in the transcatheter chemoembolization against hepatocellular carcinoma. J. Nanobiotechnol. 2023, 21, 68.
64. Zheng, Y.; Zhou, Q.; Ma, H.; et al. Slow intravenous infusion reduces the accelerated blood clearance of PEGylated liposomes by removing anti-PEG antibodies. J. Control. Release. 2025, 382, 113762.
65. Xia, Y.; Wang, Z. Y.; Zhuang, Z. N.; et al. Biomimetic sealing of cisplatin by cancer cell membranes to achieve nucleophile resistance and tumor targeting for improved cancer therapy. ACS. Appl. Mater. Interfaces. 2025, 17, 12597-609.
66. Wang, B.; Li, J.; Guo, D.; et al. The application progress of cell membrane biomimetic nanoparticles in cancer diagnosis and treatment1. Prog. Biophys. Mol. Biol. 2025, 197, 21-33.
67. Song, S.; Han, H.; Wang, J.; et al. Polymersome-based nanomotors: preparation, motion control, and biomedical applications. Chem. Sci. 2025, 16, 7106-29.
68. Huang, Y.; Kanada, M.; Ye, J.; et al. Exosome-mediated remodeling of the tumor microenvironment: from local to distant intercellular communication. Cancer. Lett. 2022, 543, 215796.
69. Zhang, Z.; He, F.; Li, W.; Liu, B.; Deng, C.; Qin, X. Material-driven therapeutics: functional nanomaterial design paradigms revolutionizing osteosarcoma treatment. J. Funct. Biomater. 2025, 16, 213.
70. Fang, Z.; Pan, S.; Gao, P.; et al. Stimuli-responsive charge-reversal nano drug delivery system: The promising targeted carriers for tumor therapy. Int. J. Pharm. 2020, 575, 118841.
71. Gebrie, H. T.; Thankachan, D.; Tsai, H. C.; Lai, J. Y.; Chang, H. M.; Wu, S. Y. Doxorubicin-loaded polymeric biotin-PEG-SeSe-PBLA micelles with surface binding of biotin-mediated cancer cell targeting and redox-responsive drug release for enhanced anticancer efficacy. Colloids. Surf. B. Biointerfaces. 2024, 241, 114028.
72. Maged, A.; Mabrouk, M.; Nour El-Din, H. T.; Osama, L.; Badr-Eldin, S. M.; Mahmoud, A. A. PLGA and PDMS-based in situ forming implants loaded with rosuvastatin and copper-selenium nanoparticles: a promising dual-effect formulation with augmented antimicrobial and cytotoxic activity in breast cancer cells. Front. Pharmacol. 2024, 15, 1397639.
73. Zong, L.; Xu, H.; Zhang, H.; et al. A review of matrix metalloproteinase-2-sensitive nanoparticles as a novel drug delivery for tumor therapy. Int. J. Biol. Macromol. 2024, 262, 130043.
74. Barve, A.; Jain, A.; Liu, H.; Zhao, Z.; Cheng, K. Enzyme-responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy. Acta. Biomater. 2020, 113, 501-11.
75. Liu, Y.; Si, L.; Jiang, Y.; et al. Design of pH-responsive nanomaterials based on the tumor microenvironment. Int. J. Nanomedicine. 2025, 20, 705-21.
76. Xu, C.; Song, R.; Lu, P.; et al. A pH-responsive charge-reversal drug delivery system with tumor-specific drug release and ROS generation for cancer therapy. Int. J. Nanomedicine. 2020, 15, 65-80.
77. Lou, X. F.; Du, Y. Z.; Xu, X. L. Endogenous enzyme-responsive nanoplatforms for anti-tumor therapy. Curr. Drug. Targets. 2021, 22, 845-55.
78. Pillarisetti, S.; Maya, S.; Sathianarayanan, S.; Jayakumar, R. Tunable pH and redox-responsive drug release from curcumin conjugated γ-polyglutamic acid nanoparticles in cancer microenvironment. Colloids. Surf. B. Biointerfaces. 2017, 159, 809-19.
79. Li, H.; Zhao, Y.; Jia, Y.; Chen, G.; Peng, J.; Li, J. pH-responsive dopamine-based nanoparticles assembled via Schiff base bonds for synergistic anticancer therapy. Chem. Commun. 2020, 56, 13347-50.
80. Liu, T.; Li, L.; Wang, S.; et al. Hybrid chalcogen bonds in prodrug nanoassemblies provides dual redox-responsivity in the tumor microenvironment. Nat. Commun. 2022, 13, 7228.
81. Li, D.; Zhang, R.; Liu, G.; Kang, Y.; Wu, J. Redox-responsive self-assembled nanoparticles for cancer therapy. Adv. Healthc. Mater. 2020, 9, e2000605.
82. Song, Y.; Dong, Q. Q.; Ni, Y. K.; Xu, X. L.; Chen, C. X.; Chen, W. Nano-proteolysis targeting chimeras (nano-PROTACs) in cancer therapy. Int. J. Nanomedicine. 2024, 19, 5739-61.
83. Zhang, C.; Zeng, Z.; Cui, D.; et al. Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy. Nat. Commun. 2021, 12, 2934.
84. Zhang, C.; He, S.; Zeng, Z.; Cheng, P.; Pu, K. Smart Nano-PROTACs reprogram tumor microenvironment for activatable photo-metabolic cancer immunotherapy. Angew. Chem. Int. Ed. 2022, 61, e202114957.
85. Wang, L.; Zhao, T.; Wang, C.; et al. Endogenous enzyme-activated spatial confinement DNA nanowire with a tumor cell-specific response for high-precision imaging of the tumor/normal cells boundary. Anal. Chem. 2025, 97, 8429-35.
86. Hao, J.; Li, Y.; Huang, L.; et al. Smart nanoarchitectures for precision RNA delivery: harnessing endogenous and exogenous stimuli in cancer treatment. Theranostics 2025, 15, 7747-78.
87. Li, W.; Lei, M.; Tan, Z.; Zhang, L.; Fang, X.; Zhang, T. Programmatically controllable activation of sonodynamic therapeutics with bioorthogonal-based mitochondria-specific exogenous agents toward accurate tumor elimination. ACS. Appl. Mater. Interfaces. 2025, 17, 37479-88.
88. Kang, N.; Son, S.; Min, S.; et al. Stimuli-responsive ferroptosis for cancer therapy. Chem. Soc. Rev. 2023, 52, 3955-72.
89. Figueroa-Espada, C. G.; Guimarães, P. P. G.; Riley, R. S.; Xue, L.; Wang, K.; Mitchell, M. J. siRNA lipid-polymer nanoparticles targeting E-selectin and cyclophilin A in bone marrow for combination multiple myeloma therapy. Cell. Mol. Bioeng. 2023, 16, 383-92.
90. Zhu, W.; Yu, M.; Wang, M.; Zhang, M.; Hai, Z. Sequential self-assembly and release of a camptothecin prodrug for tumor-targeting therapy. Nanoscale 2025, 17, 2061-7.
91. Tong, L. W.; Le, J. Q.; Song, X. H.; et al. Synergistic anti-tumor effect of dual drug co-assembled nanoparticles based on ursolic acid and sorafenib. Colloids. Surf. B. Biointerfaces. 2024, 234, 113724.
92. Shen, K.; Yuan, S.; Su, N.; et al. Monotherapy and combination therapy using antibody-drug conjugates for platinum-resistant ovarian cancer. Oncol. Rep. 2025, 53, 68.
93. Levit, S. L.; Gade, N. R.; Roper, T. D.; Yang, H.; Tang, C. Self-assembly of pH-labile polymer nanoparticles for paclitaxel prodrug delivery: formulation, characterization, and evaluation. Int. J. Mol. Sci. 2020, 21, 9292.
94. Sun, H.; Yarovoy, I.; Capeling, M.; Cheng, C. Polymers in the co-delivery of siRNA and anticancer drugs for the treatment of drug-resistant cancers. Top. Curr. Chem. 2017, 375, 24.
95. Beach, M. A.; Nayanathara, U.; Gao, Y.; et al. Polymeric nanoparticles for drug delivery. Chem. Rev. 2024, 124, 5505-616.
96. Dong, J.; Zhang, R.; Wu, H.; et al. Polymer nanoparticles for controlled release stimulated by visible light and pH. Macromol. Rapid. Commun. 2014, 35, 1255-9.
97. Dash, P.; Nataraj, N.; Panda, P. K.; et al. Construction of methotrexate-loaded Bi2S3 coated with Fe/Mn-bimetallic doped ZIF-8 nanocomposites for cancer treatment through the synergistic effects of photothermal/chemodynamic/chemotherapy. ACS. Appl. Mater. Interfaces. 2025, 17, 222-34.
98. İncir, İ.; Kaplan, Ö. Escherichia coli in the production of biopharmaceuticals. Biotechnol. Appl. Biochem. 2025, 72, 528-41.
99. Fernandes, S.; Cassani, M.; Cavalieri, F.; Forte, G.; Caruso, F. Emerging strategies for immunotherapy of solid tumors using lipid-based nanoparticles. Adv. Sci. 2024, 11, e2305769.
100. Juang, V.; Gan, J.; Xia, Z.; Wang, Y.; Schwendeman, A. Development and optimization of an in vitro release assay for evaluation of liposomal irinotecan formulation. Int. J. Pharm. 2024, 667, 124854.
101. Kumthekar, P.; Tang, S. C.; Brenner, A. J.; et al. ANG1005, a brain-penetrating peptide-drug conjugate, shows activity in patients with breast cancer with leptomeningeal carcinomatosis and recurrent brain metastases. Clin. Cancer. Res. 2020, 26, 2789-99.
102. Liu, M.; Wang, Y.; Zhang, Y.; et al. Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines. Signal. Transduct. Target. Ther. 2025, 10, 73.
103. Rehan, F.; Zhang, M.; Fang, J.; Greish, K. Therapeutic applications of nanomedicine: recent developments and future perspectives. Molecules 2024, 29, 2073.
104. Serrano-Martínez, A.; Victoria-Montesinos, D.; García-Muñoz, A. M.; Hernández-Sánchez, P.; Lucas-Abellán, C.; González-Louzao, R. A systematic review of clinical trials on the efficacy and safety of CRLX101 cyclodextrin-based nanomedicine for cancer treatment. Pharmaceutics 2023, 15, 1824.
105. Shamaeizadeh, N.; Sadeghi, E.; Varshosaz, J. Clinical outcomes and effectiveness of CRLX101 for solid tumors: a systematic review and meta-analysis. Curr. Med. Chem. 2025, 32, 3850-60.
106. Bazzazan, M. A.; Fattollazadeh, P.; Keshavarz Shahbaz, S.; Rezaei, N. Polymeric nanoparticles as a promising platform for treating triple-negative breast cancer: current status and future perspectives. Int. J. Pharm. 2024, 664, 124639.
107. Basingab, F. S.; Alshahrani, O. A.; Alansari, I. H.; et al. From pioneering discoveries to innovative therapies: a journey through the history and advancements of nanoparticles in breast cancer treatment. Breast. Cancer. 2025, 17, 27-51.
108. Dissanayake, R.; Towner, R.; Ahmed, M. Metastatic breast cancer: review of emerging nanotherapeutics. Cancers 2023, 15, 2906.
109. Negut, I.; Bita, B. Polymeric micellar systems-a special emphasis on "smart" drug delivery. Pharmaceutics 2023, 15, 976.
110. Wei, G.; Zhang, S.; Yu, S.; Lu, W. Intravital microscopy reveals endothelial transcytosis contributing to significant tumor accumulation of albumin nanoparticles. Pharmaceutics 2023, 15, 519.
111. Levytska, K.; Naumann, R. W.; Benfield, M. J.; et al. Pegylated liposomal doxorubicin does not affect cardiac function in patients treated for gynecologic malignancies. Gynecol. Oncol. Rep. 2025, 58, 101727.
112. Jin, G. W.; Rejinold, N. S.; Choy, J. H. Multifunctional polymeric micelles for cancer therapy. Polymers 2022, 14, 4839.
113. Zarnoosheh Farahani, T.; Nejadmoghaddam, M. R.; Sari, S.; Ghahremanzadeh, R.; Minai-Tehrani, A. Generation of anti-SN38 antibody for loading efficacy and therapeutic monitoring of SN38-containing therapeutics. Heliyon 2024, 10, e33232.
114. Zhou, J.; Yang, R.; Chen, Y.; Chen, D. Efficacy tumor therapeutic applications of stimuli-responsive block copolymer-based nano-assemblies. Heliyon 2024, 10, e28166.
115. Tewari, A. K.; Upadhyay, S. C.; Kumar, M.; et al. Insights on development aspects of polymeric nanocarriers: the translation from bench to clinic. Polymers 2022, 14, 3545.
116. Kosaka, Y.; Saeki, T.; Takano, T.; et al. Multicenter randomized open-label phase II clinical study comparing outcomes of NK105 and paclitaxel in advanced or recurrent breast cancer. Int. J. Nanomedicine. 2022, 17, 4567-78.
117. Yu, P.; Zhu, C.; You, X.; et al. The combination of immune checkpoint inhibitors and antibody-drug conjugates in the treatment of urogenital tumors: a review insights from phase 2 and 3 studies. Cell. Death. Dis. 2024, 15, 433.
118. Boere, I.; Vergote, I.; Hanssen, R.; et al. CINOVA: a phase II study of CPC634 (nanoparticulate docetaxel) in patients with platinum resistant recurrent ovarian cancer. Int. J. Gynecol. Cancer. 2023, 33, 1247-52.
119. Chehelgerdi, M.; Chehelgerdi, M.; Allela, O. Q. B.; et al. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol. Cancer. 2023, 22, 169.
120. Nagpal, S.; Nguyen, K. S.; Bertrand, S.; et al. Etirinotecan pegol (NKTR-102) in patients with active brain metastases from lung or breast cancer. Cancer. Rep. 2025, 8, e70330.
121. Alven, S.; Nqoro, X.; Buyana, B.; Aderibigbe, B. A. Polymer-drug conjugate, a potential therapeutic to combat breast and lung cancer. Pharmaceutics 2020, 12, 406.
122. Cornelius, P.; Mayes, B. A.; Petersen, J. S.; et al. Pharmacological characterization of SDX-7320/evexomostat: a novel methionine aminopeptidase type 2 inhibitor with anti-tumor and anti-metastatic activity. Mol. Cancer. Ther. 2024, 23, 595-605.
123. Kinoshita, R.; Ishima, Y.; Chuang, V. T. G.; et al. The therapeutic effect of human serum albumin dimer-doxorubicin complex against human pancreatic tumors. Pharmaceutics 2021, 13, 1209.
124. Lei, F.; Xi, X.; Rachagani, S.; et al. Nanoscale platform for delivery of active IRINOX to combat pancreatic cancer. J. Control. Release. 2021, 330, 1229-43.
125. Khan, T.; Cabral, H. Abnormal glycosylation of cancer stem cells and targeting strategies. Front. Oncol. 2021, 11, 649338.
126. Wang, T.; Wu, C.; Hu, Y.; Zhang, Y.; Ma, J. Stimuli-responsive nanocarrier delivery systems for Pt-based antitumor complexes: a review. RSC. Adv. 2023, 13, 16488-511.
127. Gao, G.; Shu, P.; Tan, Y.; et al. Preclinical development and phase I study of ZSYY001, a polymeric micellar paclitaxel for advanced solid tumor. Cancer. Med. 2025, 14, e71039.
128. Khaliq, N. U.; Lee, J.; Kim, S.; Sung, D.; Kim, H. Pluronic F-68 and F-127 based nanomedicines for advancing combination cancer therapy. Pharmaceutics 2023, 15, 2102.
129. Moazzam, M.; Zhang, M.; Hussain, A.; Yu, X.; Huang, J.; Huang, Y. The landscape of nanoparticle-based siRNA delivery and therapeutic development. Mol. Ther. 2024, 32, 284-312.
130. Zhang, J.; Wang, S.; Zhang, D.; et al. Nanoparticle-based drug delivery systems to enhance cancer immunotherapy in solid tumors. Front. Immunol. 2023, 14, 1230893.
131. Wei, X.; Su, C.; Liu, Y.; et al. IPSC-derived NK cells for immunotherapy and therapeutic perspective (Review). Mol. Med. Rep. 2025, 32, 222.
132. Zuo, S.; Wang, Z.; Jiang, X.; et al. Regulating tumor innervation by nanodrugs potentiates cancer immunochemotherapy and relieve chemotherapy-induced neuropathic pain. Biomaterials 2024, 309, 122603.
133. Pang, J.; Chen, X.; Lin, Z.; et al. Inhalable pH-responsive charge-reversal polymer-small interfering RNA polyplexes for directed gene therapy of anaplastic lymphoma kinase fusion-positive lung cancer. J. Control. Release. 2025, 381, 113644.
134. Ebenezer, O.; Oyebamiji, A. K.; Olanlokun, J. O.; Tuszynski, J. A.; Wong, G. K. Recent update on siRNA therapeutics. Int. J. Mol. Sci. 2025, 26, 3456.
135. Xu, Y.; Biby, S.; Kaur, B.; Zhang, S. A patent review of NLRP3 inhibitors to treat autoimmune diseases. Expert. Opin. Ther. Pat. 2023, 33, 455-70.
136. Sorrentino, C.; Ciummo, S. L.; Fieni, C.; Di Carlo, E. Nanomedicine for cancer patient-centered care. MedComm 2024, 5, e767.
137. Kim, M.; Hwang, Y.; Lim, S.; Jang, H. K.; Kim, H. O. Advances in nanoparticles as non-viral vectors for efficient delivery of CRISPR/Cas9. Pharmaceutics 2024, 16, 1197.
138. Ju, J. Challenges and opportunities in microRNA-based cancer therapeutics. Cell. Rep. Med. 2025, 6, 102057.
139. Rohiwal, S. S.; Dvorakova, N.; Klima, J.; et al. Polyethylenimine based magnetic nanoparticles mediated non-viral CRISPR/Cas9 system for genome editing. Sci. Rep. 2020, 10, 4619.
140. Kaupbayeva, B.; Tsoy, A.; Safarova Yantsen, Y.; et al. Unlocking genome editing: advances and obstacles in CRISPR/cas delivery technologies. J. Funct. Biomater. 2024, 15, 324.
141. Madigan, V.; Zhang, F.; Dahlman, J. E. Drug delivery systems for CRISPR-based genome editors. Nat. Rev. Drug. Discov. 2023, 22, 875-94.
142. Liu, F.; Su, H.; Li, M.; Xie, W.; Yan, Y.; Shuai, Q. Zwitterionic modification of polyethyleneimine for efficient in vitro siRNA delivery. Int. J. Mol. Sci. 2022, 23, 5014.
143. Liyanage, W.; Kannan, G.; Kannan, S.; Kannan, R. M. Efficient intracellular delivery of CRISPR-Cas9 ribonucleoproteins using dendrimer nanoparticles for robust genomic editing. Nano. Today. 2025, 61, 102654.
144. Liu, C.; Wan, T.; Wang, H.; Zhang, S.; Ping, Y.; Cheng, Y. A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci. Adv. 2019, 5, eaaw8922.
145. Gao, X.; Jin, Z.; Tan, X.; et al. Hyperbranched poly(β-amino ester) based polyplex nanopaticles for delivery of CRISPR/Cas9 system and treatment of HPV infection associated cervical cancer. J. Control. Release. 2020, 321, 654-68.
146. Budiarso, I. J.; Rini, N. D. W.; Tsalsabila, A.; Birowosuto, M. D.; Wibowo, A. Chitosan-based smart biomaterials for biomedical applications: progress and perspectives. ACS. Biomater. Sci. Eng. 2023, 9, 3084-115.
147. Chang, D.; Ma, Y.; Xu, X.; Xie, J.; Ju, S. Stimuli-responsive polymeric nanoplatforms for cancer therapy. Front. Bioeng. Biotechnol. 2021, 9, 707319.
148. Sahel, D. K.; Vora, L. K.; Saraswat, A.; et al. CRISPR/Cas9 genome editing for tissue-specific in vivo targeting: nanomaterials and translational perspective. Adv. Sci. 2023, 10, e2207512.
149. Ashrafizadeh, M.; Zarrabi, A.; Bigham, A.; et al. (Nano)platforms in breast cancer therapy: drug/gene delivery, advanced nanocarriers and immunotherapy. Med. Res. Rev. 2023, 43, 2115-76.
150. Tang, D.; Yan, Y.; Li, Y.; et al. Targeting DAD1 gene with CRISPR-Cas9 system transmucosally delivered by fluorinated polylysine nanoparticles for bladder cancer intravesical gene therapy. Theranostics 2024, 14, 203-19.
151. Sancho-Albero, M.; Decio, A.; Akpinar, R.; et al. Melanoma extracellular vesicles membrane coated nanoparticles as targeted delivery carriers for tumor and lungs. Mater. Today. Bio. 2025, 30, 101433.
152. Bazi Alahri, M.; Jibril Ibrahim, A.; Barani, M.; et al. Management of brain cancer and neurodegenerative disorders with polymer-based nanoparticles as a biocompatible platform. Molecules 2023, 28, 841.
153. Guo, W.; Chen, M.; Yang, Y.; et al. Biocompatibility and biological effects of surface-modified conjugated polymer nanoparticles. Molecules 2023, 28, 2034.
154. Feng, Q.; Li, Q.; Zhou, H.; et al. CRISPR technology in human diseases. MedComm. (2020). 2024, 5, e672.
155. Sun, G.; Wang, L.; Dong, Z.; et al. The current status, hotspots, and development trends of nanoemulsions: a comprehensive bibliometric review. Int. J. Nanomedicine. 2025, 20, 2937-68.
156. Zhang, L.; Cui, S.; Ding, N.; et al. Tumor-associated macrophages regulating a polymer nanoplatform for synergistic treatment of breast tumors. ACS. Appl. Mater. Interfaces. 2023, 15, 34527-39.
157. Hou, X.; Wang, C.; Zhao, Y.; et al. Tumor-specific activated polymeric nanotuners disrupt positive feedback cycle of hypoxia and apoptosis evasion for potent cancer radiotherapy. Biomaterials 2025, 322, 123361.
158. Aljabali, A. A.; Obeid, M. A.; Bashatwah, R. M.; et al. Nanomaterials and their impact on the immune system. Int. J. Mol. Sci. 2023, 24, 2008.
159. Winkeljann, B.; Keul, D. C.; Merkel, O. M. Engineering poly- and micelleplexes for nucleic acid delivery - A reflection on their endosomal escape. J. Control. Release. 2023, 353, 518-34.
160. Zou, Y.; Sun, X.; Yang, Q.; et al. Blood-brain barrier-penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy. Sci. Adv. 2022, 8, eabm8011.
161. Chandakavathe, B. N.; Kulkarni, R. G.; Dhadde, S. B. Grafting of natural polymers and gums for drug delivery applications: a perspective review. Crit. Rev. Ther. Drug. Carrier. Syst. 2022, 39, 45-83.
162. Date, T.; Nimbalkar, V.; Kamat, J.; Mittal, A.; Mahato, R. I.; Chitkara, D. Lipid-polymer hybrid nanocarriers for delivering cancer therapeutics. J. Control. Release. 2018, 271, 60-73.







